Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
2.
ACS Omega ; 9(6): 7022-7033, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371832

RESUMO

The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities.

3.
Adv Sci (Weinh) ; 10(33): e2305179, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852947

RESUMO

Barium tantalum oxynitride (BaTaO2 N), as a member of an emerging class of perovskite oxynitrides, is regarded as a promising inorganic material for solar water splitting because of its small band gap, visible light absorption, and suitable band edge potentials for overall water splitting in the absence of an external bias. However, BaTaO2 N still exhibits poor water-splitting performance that is susceptible to its synthetic history, surface states, recombination process, and instability. This review provides a comprehensive summary of previous progress, current advances, existing challenges, and future perspectives of BaTaO2 N for solar water splitting. A particular emphasis is given to highlighting the principles of photoelectrochemical (PEC) water splitting, classic and emerging photocatalysts for oxygen evolution reactions, and the crystal and electronic structures, dielectric, ferroelectric, and piezoelectric properties, synthesis routes, and thin-film fabrication of BaTaO2 N. Various strategies to achieve enhanced water-splitting performance of BaTaO2 N, such as reducing the surface and bulk defect density, engineering the crystal facets, tailoring the particle morphology, size, and porosity, cation doping, creating the solid solutions, forming the heterostructures and heterojunctions, designing the photoelectrochemical cells, and loading suitable cocatalysts are discussed. Also, the avenues for further investigation and the prospects of using BaTaO2 N in solar water splitting are presented.

4.
Viruses ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37515135

RESUMO

Among emerging zoonotic pathogens, mosquito-borne viruses (MBVs) circulate between vertebrate animals and mosquitoes and represent a serious threat to humans via spillover from enzootic cycles to the human community. Active surveillance of MBVs in their vectors is therefore essential to better understand and prevent spillover and emergence, especially at the human-animal interface. In this study, we assessed the presence of MBVs using molecular and phylogenetic methods in mosquitoes collected along an ecological gradient ranging from rural urbanized areas to highland forest areas in northern Thailand. We have detected the presence of insect specific flaviviruses in our samples, and the presence of the emerging zoonotic Tembusu virus (TMUV). Reported for the first time in 1955 in Malaysia, TMUV remained for a long time in the shadow of other flaviviruses such as dengue virus or the Japanese encephalitis virus. In this study, we identified two new TMUV strains belonging to cluster 3, which seems to be endemic in rural areas of Thailand and highlighted the genetic specificities of this Thai cluster. Our results show the active circulation of this emerging flavivirus in Thailand and the need for continuous investigation on this poorly known but threatening virus in Asia.


Assuntos
Culex , Culicidae , Flavivirus , Animais , Humanos , Filogenia , Tailândia/epidemiologia , Mosquitos Vetores , Flavivirus/genética
6.
Nature ; 618(7967): 981-985, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225998

RESUMO

Soils store more carbon than other terrestrial ecosystems1,2. How soil organic carbon (SOC) forms and persists remains uncertain1,3, which makes it challenging to understand how it will respond to climatic change3,4. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss5-7. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways4,6,8-11, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes12,13. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved7,14,15. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.


Assuntos
Sequestro de Carbono , Carbono , Ecossistema , Microbiologia do Solo , Solo , Carbono/análise , Carbono/metabolismo , Mudança Climática , Plantas , Solo/química , Conjuntos de Dados como Assunto , Aprendizado Profundo
7.
Antioxidants (Basel) ; 12(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36829907

RESUMO

We hypothesized that fetal exposure to the oxidative stress induced by the combined challenge of preeclampsia (PE) and high altitude would induce a significant impairment in the development of pulmonary circulation. We conducted a prospective study in La Paz (Bolivia, mean altitude 3625 m) in which newborns from singleton pregnancies with and without PE were compared (PE group n = 69, control n = 70). We conducted an echocardiographic study in these infants at the median age of two days. The percentage of cesarean deliveries and small for gestational age (SGA) infants was significantly higher in the PE group. Heart rate, respiratory rate, and oxygen saturation did not vary significantly between groups. Estimated pulmonary arterial pressure and pulmonary vascular resistance were 30% higher in newborns exposed to PE and high altitude compared with those exposed only to high altitude. We also detected signs of right ventricular hypertrophy in infants subjected to both exposures. In conclusion, this study provides evidence that the combination of PE and pregnancy at high altitude induces subclinical alterations in the pulmonary circulation of the newborn. Follow-up of this cohort may provide us with valuable information on the potential increased susceptibility to developing pulmonary hypertension or other pulmonary and cardiovascular disorders.

8.
Jpn J Infect Dis ; 76(1): 55-63, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36184398

RESUMO

Mosquitoes are important arthropod vectors of arboviruses. The family Phenuiviridae includes several medically important arboviruses, such as the Rift Valley fever phlebovirus and Toscana phlebovirus. Recent comprehensive genetic analyses have identified many novel mosquito-specific viruses that are phylogenetically related to Phenuiviridae. We collected mosquitoes from Hokkaido in northern Japan, and conducted reverse transcription polymerase chain reactions (RT-PCRs) targeting the RNA-dependent RNA polymerase (RdRp) gene of Phenuiviridae. A total of 285 pools, comprising 3,082 mosquitoes from 2 genera and 8 species, were collected. Partial RdRp sequences were detected in 97 pools, which allowed us to classify the viruses into 3 clusters provisionally designated as Etutanne virus (ETTV) 1, 2, and 3. The virus most closely related to ETTVs is Narangue virus (family Phenuiviridae, genus Mobuvirus), which was detected in Mansonia mosquitoes; the nucleotide and amino acid sequences of the Narangue virus are 58.4-66.2% and 64.7-86.7% similar, respectively, to those of ETTVs. PCR and RT-PCR using DNA and RNase digestion methods showed that the ETTVs are RNA viruses that do not form non-retroviral integrated RNA virus sequences in the mosquito genome.


Assuntos
Aedes , Arbovírus , Phlebovirus , Vírus , Animais , Aedes/genética , Japão , Mosquitos Vetores/genética , Arbovírus/genética , Phlebovirus/genética , RNA Polimerase Dependente de RNA
10.
J Hazard Mater ; 429: 128300, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35077970

RESUMO

The use of antiviral drugs has surged as a result of the COVID-19 pandemic, resulting in higher concentrations of these pharmaceuticals in wastewater. The degradation efficiency of antiviral drugs in wastewater treatment plants has been reported to be too low due to their hydrophilic nature, and an additional procedure is usually necessary to degrade them completely. Photocatalysis is regarded as one of the most effective processes to degrade antiviral drugs. The present study aims at synthesizing multiphase photocatalysts by a simple calcination of industrial waste from ammonium molybdate production (WU photocatalysts) and its combination with WO3 (WW photocatalysts). The X-ray diffraction (XRD) results confirm that the presence of multiple crystalline phases in the synthesized photocatalysts. UV-Vis diffuse reflectance spectra reveal that the synthesized multiphase photocatalysts absorb visible light up to 620 nm. Effects of calcination temperature of industrial waste (550-950 °C) and WO3 content (0-100%) on photocatalytic activity of multiphase photocatalysts (WU and WW) for efficient removal of SARS-CoV-2 antiviral drugs (lopinavir and ritonavir) in model and real wastewaters are studied. The highest k1 value is observed for the photocatalytic removal of ritonavir from model wastewater using WW4 (35.64 ×10-2 min-1). The multiphase photocatalysts exhibit 95% efficiency in the photocatalytic removal of ritonavir within 15 of visible light irradiation. In contrast, 60 min of visible light irradiation is necessary to achieve 95% efficiency in the photocatalytic removal of lopinavir. The ecotoxicity test using zebrafish (Danio rerio) embryos shows no toxicity for photocatalytically treated ritonavir-containing wastewater, and the contrary trend is observed for photocatalytically treated lopinavir-containing wastewater. The synthesized multiphase photocatalysts can be tested and applied for efficient degradation of other SARS-CoV-2 antiviral drugs in wastewater in the future.


Assuntos
COVID-19 , Águas Residuárias , Animais , Antivirais , Catálise , Humanos , Resíduos Industriais , Pandemias , SARS-CoV-2 , Peixe-Zebra
11.
Insects ; 12(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34940185

RESUMO

Flowers and their spatial clustering are important parameters that mediate the foraging behavior and visitation rate of pollinating insects. Visual stimuli are crucial for triggering behavioral changes in the house fly, Musca domestica, which regularly visits plants for feeding and reproduction. The success of bait technology, which is the principal means of combatting flies, is adversely affected by reduced attractiveness and ineffective application techniques. Despite evidence that house flies have color vision capacity, respond to flowers, and exhibit color and pattern preference, the potential of artificial flowers as attractive factors has not been explored. The present study was performed to investigate whether artificial floral designs can lure and kill house flies. Starved wild house flies were presented with equal opportunities to acquire sugar meals, to which boric acid had been added as a toxin, from one flower arrangement (blue-dominated design, BDD; yellow-dominated design, YDD; or pink-dominated design, PDD), and a non-toxic white design (WDD). We also allowed house flies to forage within an enclosure containing two non-toxic floral designs (WDDs). The differences in mortality between the two environments with and without toxicant were examined. The survival rate of Musca domestica was extremely high when WDDs containing non-toxic sugar sources were the only feeding sites available. When given an option to forage in an environment containing a BDD and a WDD, house flies showed a high mortality rate (76%) compared to their counterparts maintained in the WDD environment (2%). When kept in an enclosure containing one YDD and a WDD, flies showed a mortality rate of 88%; however, no mortality occurred among flies confined to a compound with a WDD pair. When provided an even chance of foraging in an enclosure containing a mixed pair of floral arrangements (PDD and WDD) and another with two WDDs, flies showed a higher mortality rate (78%) in the first environment. However, the maximum survival rate (100%) was seen in the WDD environment. Exposure to YDD tended to result in a greater mortality rate than with the two other floral designs. Mortality gradually increased with time among flies exposed to tested artificial floral designs. The results presented here clearly indicated that artificial flower arrangements with a toxic sugar reward were strikingly attractive for house flies when their preferred color (white) was present. These observations offer novel possibilities for future development of flower mimic-based house fly control.

12.
Virol J ; 18(1): 187, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526049

RESUMO

BACKGROUND: Flaviviruses are representative arboviruses carried by arthropods and/or vertebrates; these viruses can pose a public health concern in many countries. By contrast, it is known that a novel virus group called insect-specific flaviviruses (ISFs) also infects arthropods, although no such virus has yet been isolated from vertebrates. The characteristics of ISFs, which affect replication of human-pathogenic flaviviruses within co-infected mosquito cells or mosquitoes without affecting the mosquitoes themselves, mean that we should pay attention to both ISFs and human-pathogenic flaviviruses, despite the fact that ISFs appear not to be directly hazardous to human health. To assess the risk of diseases caused by flaviviruses, and to better understand their ecology, it is necessary to know the extent to which flaviviruses are harbored by arthropods. METHODS: We developed a novel universal primer for use in a PCR-based system to detect a broad range of flaviviruses. We then evaluated its performance. The utility of the novel primer pair was evaluated in a PCR assay using artificially synthesized oligonucleotides derived from a template viral genome sequence. The utility of the primer pair was also examined by reverse transcription PCR (RT-PCR) using cDNA templates prepared from virus-infected cells or crude supernatants prepared from virus-containing mosquito homogenates. RESULTS: The novel primer pair amplified the flavivirus NS5 sequence (artificially synthesized) in all samples tested (six species of flavivirus that can cause infectious diseases in humans, and flaviviruses harbored by insects). In addition, the novel primer pair detected viral genomes in cDNA templates prepared from mosquito cells infected with live flavivirus under different infectious conditions. Finally, the viral genome was detected with high sensitivity in crude supernatants prepared from pooled mosquito homogenates. CONCLUSION: This PCR system based on a novel primer pair makes it possible to detect arthropod-borne flaviviruses worldwide (the primer pair even detected viruses belonging to different genetic subgroups). As such, an assay based on this primer pair may help to improve public health and safety, as well as increase our understanding of flavivirus ecology.


Assuntos
Culicidae , Infecções por Flavivirus , Flavivirus , Animais , Flavivirus/genética , Genoma Viral , Filogenia
13.
Pathogens ; 10(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34451402

RESUMO

The Zika virus (ZIKV) is a rapidly expanding mosquito-borne virus that causes febrile illness in humans. Aedes aegypti and Ae. albopictus are the primary ZIKV vectors; however, the potential vector competence of other Aedes mosquitoes distributed in northern Japan (Palearctic ecozone) are not yet known. In this study, the susceptibility to Zika virus infection of three Aedes mosquitoes distributed in the main city of the northern Japan and their capacities as vectors for ZIKV were evaluated. Field-collected mosquitoes were fed ad libitum an infectious blood meal containing the ZIKV PRVABC59. The Zika virus was detected in the abdomen of Ae. galloisi and Ae. japonicus at 2-10 days post infection (PI), and from the thorax and head of Ae. galloisi at 10 days PI, resulting in 17.6% and 5.9% infection rates, respectively. The Zika virus was not detected from Ae. punctor at any time. Some northern Japanese Aedes could be suspected as vectors of ZIKV but the risk may be low when compared with major ZIKV vectors.

14.
Pathogens ; 10(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34451474

RESUMO

Reported for the first time in 1955 in Malaysia, Tembusu virus (TMUV) remained, for a long time, in the shadow of flaviviruses with human health importance such as dengue virus or Japanese encephalitis virus. However, since 2010 and the first large epidemic in duck farms in China, the threat of its emergence on a large scale in Asia or even its spillover into the human population is becoming more and more significant. This review aims to report current knowledge on TMUV from viral particle organization to the development of specific vaccines and therapeutics, with a particular focus on host-virus interactions.

15.
Chemosphere ; 281: 130821, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34000653

RESUMO

Water pollution is an environmental problem in constant raising because of population growing, industrial development, agricultural frontier expansion, and principally because of the lack of wastewater treatment technology to remove organic recalcitrant and toxic pollutants from industrial and domestic wastewater. Recalcitrant compounds are a serious environmental and health problem mainly due to their toxicity and potential hazardous effects on living organisms, including human beings. Conventional wastewater treatments have not been able to remove efficiently pollutants from water; however, electrochemical advanced oxidation processes (EAOPs) are able to solve this environmental concern. One of the most recent EAOPs technology is photoelectrocatalysis (PEC), it consists in applying an external bias potential to a semiconductor film placed over a conductive substrate to avoid the recombination of photogenerated electron-hole (e-/h+) pairs, increasing h+ availability and hydroxyl radicals' formation, responsible for promoting the degradation/mineralization of organic pollutants in aqueous medium. This review summarizes the recent advances in PEC as a promising technology for wastewater treatment. It addresses the fundamentals and kinetic aspects of PEC. An analysis of photoanode materials and of the configuration of photoelectrochemical reactors is also presented, including an analysis of the influence of the main operational parameters on the treatment of contaminated water. Finally, the most recent applications of PEC are reviewed, and the challenges and perspectives of PEC in wastewater treatment are discussed.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Humanos , Oxirredução , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
16.
Pathogens ; 9(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096624

RESUMO

Dynamics of dengue serotype 2 virus isolated from patients with different disease severity, namely flu-like classic dengue fever (DF) and dengue shock syndrome (DSS) were studied in its mosquito vector Aedes aegypti. We compared isolate infectivity and vector competence (VC) among thirty two A. aegypti-viral isolate pairs. Mosquito populations from high dengue incidence area exhibited overall greater VC than those from low dengue incidence area at 58.1% and 52.5%, respectively. On the other hand, the overall infection rates for the isolates ThNR2/772 (DF, 62.3%) and ThNR2/391 (DSS, 60.9%), were significantly higher than those for isolates ThNR2/406 (DF, 55.2%) and ThNR2/479 (DSS, 54.8%). These results suggest that the efficacy of dengue virus circulation was likely to vary according to the combination between the virus strains and origin of the mosquito strains, and this may have epidemiologic implications toward the incidence of flu-like classic dengue fever (DF) and dengue shock syndrome (DSS).

17.
Viruses ; 11(10)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31601017

RESUMO

Mayaro (MAYV) is an emerging arthropod-borne virus belonging to the Alphavirus genus of the Togaviridae family. Although forest-dwelling Haemagogus mosquitoes have been considered as its main vector, the virus has also been detected in circulating Aedes ssp mosquitoes. Here we assess the susceptibility of Aedes aegypti and Aedes albopictus to infection with MAYV and their innate immune response at an early stage of infection. Aedes albopictus was more susceptible to infection with MAYV than Ae. aegypti. Analysis of transcript levels of twenty immunity-related genes by real-time PCR in the midgut of both mosquitoes infected with MAYV revealed increased expression of several immune genes, including CLIP-domain serine proteases, the anti-microbial peptides defensin A, E, cecropin E, and the virus inducible gene. The regulation of certain genes appeared to be Aedes species-dependent. Infection of Ae. aegypti with MAYV resulted in increased levels of myeloid differentiation2-related lipid recognition protein (ML26A) transcripts, as compared to Ae. albopictus. Increased expression levels of thio-ester-containing protein 22 (TEP22) and Niemann-Pick type C1 (NPC1) gene transcripts were observed in infected Ae. albopictus, but not Ae. aegypti. The differences in these gene expression levels during MAYV infection could explain the variation in susceptibility observed in both mosquito species.


Assuntos
Aedes/virologia , Infecções por Alphavirus/transmissão , Alphavirus/imunologia , Imunidade Inata , Aedes/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Imunidade Inata/genética , Mosquitos Vetores/virologia , Reação em Cadeia da Polimerase em Tempo Real , Serina Proteases/genética , Serina Proteases/metabolismo
18.
PLoS One ; 14(8): e0221179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31415663

RESUMO

Dengue fever is caused by dengue viruses (DENV) from the Flavivirus genus and is the most prevalent arboviral disease. DENV exists in four immunogenically distinct and genetically-related serotypes (DENV-1 to 4), each subdivided in genotypes. Despite the endemicity of all four DENV serotypes in Thailand, no prior study has characterized the circulation of DENV in the southern provinces of the country. To determine the genetic diversity of DENV circulating in Southern Thailand in 2015 and 2016, we investigated 46 viruses from 182 patients' sera confirmed positive for DENV by serological and Nested RT-PCR tests. Our dataset included 2 DENV-1, 20 DENV-2, 9 DENV-3 and 15 DENV-4. Phylogenetic analysis was performed on viral envelop sequences. This revealed that part of the identified genotypes from DENV-1 and DENV-4 had been predominant in Asia (genotype I for both serotypes), while genotype II for DENV-4 and the Cosmopolitan genotype DENV-2 were also circulating. Whereas DENV-3 genotype II had been predominantly detected in South East Asia during the previous decades, we found genotype III and genotype I in Southern Thailand. All DENV genotype identified in this study were closely related to contemporary strains circulating in Southeast Asian countries, emphasizing the regional circulation of DENV. These results provide new insights into the co-circulation of all four DENV serotypes in Southern Thailand, confirming the hyperendemicity of DENV in the region. These findings also suggest a new trend of dissemination for some DENV serotypes with a possible shift in genotype distribution; as recently observed in other Asian countries.


Assuntos
Vírus da Dengue/genética , Dengue/genética , Genótipo , Filogenia , Sorogrupo , Adolescente , Adulto , Criança , Técnicas de Cocultura , Dengue/epidemiologia , Vírus da Dengue/isolamento & purificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tailândia/epidemiologia
19.
EXCLI J ; 18: 467-476, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31423125

RESUMO

Chikungunya virus (CHIKV), a re-emerging infectious arbovirus, causes Chikungunya fever that is characterized by fever, skin rash, joint pain, arthralgia and occasionally death. Despite it has been described for 66 years already, neither potential vaccine nor a specific drug is available yet. During CHIKV infection, interferon type I signaling pathway is stimulated and releases hundreds of interferon stimulated genes (ISGs). Our previous study reported that IFI16, a member of ISGs, is up-regulated during CHIKV virus infection and the suppression of the gene resulted in increased virus replication. Furthermore, our group also found that inflammasome activation can inhibit CHIKV infection in human foreskin cells (HFF1). Concomitantly, it has been reported that IFI16 activates the inflammasome to suppress virus infection. Therefore, we have hypothesized that IFI16 could be involved in CHIKV infection. In this study, we confirmed the expression level of IFI16 by Western blotting analysis and found that IFI16 was up-regulated following CHIKV infection in both HFF1 and human embryonic kidney cells. We next investigated its antiviral activity and found that forced expression of IFI16 completely restricted CHIKV infection while endogenous silencing of the gene markedly increased virus replication. Furthermore, we have discovered that IFI16 inhibited CHIKV replication, at least, in cell-to-cell transmission as well as the diffusion step. Interestingly, IFI16 also exerted its antiviral activity against Zika virus (ZIKV) infection, the global threat re-emerging virus can cause microcephaly in humans. Taken together, this study provides the first evidence of an antivirus activity of IFI16 during in vitro arbovirus infection, thus expanding its antiviral spectrum that paves the way to further development of antiviral drugs and vaccines.

20.
Acta Trop ; 194: 93-99, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30922800

RESUMO

Sound and its reception are crucial for reproduction, survival, and population maintenance of many animals. In insects, low-frequency vibrations facilitate sexual interactions, whereas noise disrupts the perception of signals from conspecifics and hosts. Despite evidence that mosquitoes respond to sound frequencies beyond fundamental ranges, including songs, and that males and females need to struggle to harmonize their flight tones, the behavioral impacts of music as control targets remain unexplored. In this study, we examined the effects of electronic music (Scary Monsters and Nice Sprites by Skrillex) on foraging, host attack, and sexual activities of the dengue vector Aedes aegypti. Adults were presented with two sound environments (music-off or music-on). Discrepancies in visitation, blood feeding, and copulation patterns were compared between environments with and without music. Ae. aegypti females maintained in the music-off environment initiated host visits earlier than those in the music-on environment. They visited the host significantly less often in the music-on than the music-off condition. Females exposed to music attacked hosts much later than their non-exposed peers. The occurrence of blood feeding activity was lower when music was being played. Adults exposed to music copulated far less often than their counterparts kept in an environment where there was no music. In addition to providing insight into the auditory sensitivity of Ae. aegypti to sound, our results indicated the vulnerability of its key vectorial capacity traits to electronic music. The observation that such music can delay host attack, reduce blood feeding, and disrupt mating provides new avenues for the development of music-based personal protective and control measures against Aedes-borne diseases.


Assuntos
Aedes/fisiologia , Comportamento Animal , Vírus da Dengue/fisiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/virologia , Som , Aedes/virologia , Animais , Copulação , Feminino , Masculino , Mosquitos Vetores/fisiologia , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA