Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0294672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38091271

RESUMO

Species of the genus Tulostoma are easily recognizable by the presence of a spore sac, with a mouth from which spores are released, attached to a stipe. Tulostoma is a species-diverse genus with a worldwide distribution, and some attempts were made to delimitate species and to evaluate reliable taxonomic-informative characteristics for species identification. However, there is a notable information gap regarding Neotropical species, especially for geographic distribution and DNA data, which hampers further understanding of the infrageneric diversity, evolution, and ecology of this genus. Based on morphological analysis, molecular phylogenetics and geographic distribution, we propose here two new species of Tulostoma with reticulated spores, from the two threatened Brazilian geographical areas, Atlantic Forest and "campos rupestres" (rupestrian grassland), as well as we provide notes on the taxonomic rank of Tulostoma exasperatum var. ridleyi.


Assuntos
Agaricales , DNA , Esporos Fúngicos , Filogenia , Análise de Sequência de DNA
2.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848567

RESUMO

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Assuntos
Lentinula , Filogenia , Ásia Oriental , Tailândia
3.
Mol Phylogenet Evol ; 173: 107494, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35490968

RESUMO

Lentinula (Basidiomycota, Agaricales) includes the most widely cultivated mushroom in the world, Lentinula edodes, also known as shiitake (Japanese) or xiang-gu (Chinese). At present, nine species are recognized in the genus, based on morphology, mating criteria, and geographic distribution. However, analyses of internal transcribed spacers (ITS) of ribosomal RNA genes have suggested that there are cryptic lineages. We analyzed a global-scale phylogenetic dataset from 325 Lentinula individuals from 24 countries in Asia-Australasia and the Americas plus Madagascar, with 325 sequences of ITS, 80 LSU sequences, and 111 sequences of translation elongation factor (tef1-α) genes. We recovered 15 independent lineages (Groups 1-15) that may correspond to species. Lineages in Asia-Australasia (Groups 1-5) and the Americas plus Madagascar (Groups 6-15) formed sister clades. Four lineages are represented only by sequences from single individuals and require further molecular sampling, including L. aff. raphanica (Group 7), L. ixodes (Group 8), L. boryana (Group 12), and L. aff. aciculospora (Group 14). Groups 1 and 5 are here referred to L. edodes and L. aff. edodes, respectively. However, these groups most likely represent the same species and are only recognized as (unsupported) monophyletic lineages by maximum likelihood analyses of ITS alone. Other putative species resolved here include L. lateritia (Group 2), L. novae-zelandieae (Group 3), L. aff. lateritia (Group 4), L. raphanica (Group 6), L. aff. detonsa (Group 9), L. detonsa (Group 10), L. guzmanii sp. nov. (Group 11), L. aciculospora (Group 13), and L. madagasikarensis (Group 15). Groups 9-12 represent the "L. boryana complex". Molecular clock and historical biogeographic analyses suggest that the most recent common ancestor (MRCA) of Lentinula can be placed in the middle Oligocene, ca. 30 million years ago (Ma), and had a likely presence in neotropical America. The MRCA of Lentinula in the Americas and Madagascar lived ca. 22 Ma in the Neotropics and the MRCA of Lentinula in Asia-Australasia lived ca. 6 Ma in Oceania. Given the current knowledge about plate tectonics and paleoclimatic models of the last 30 Myr, our phylogenetic hypothesis suggests that the extant distribution of Lentinula is likely to have arisen, in large part, due to long-distance dispersal. Lentinula collections include at least four dubious taxa that need further taxonomic studies: L. reticeps from the USA (Ohio); L. guarapiensis from Paraguay; Lentinus puiggarii from Brazil (São Paulo); and "L. platinedodes" from Vietnam. Approximately ten of the fifteen Groups are reported on Fagaceae, which appears to be the ancestral substrate of Lentinula.


Assuntos
Basidiomycota , Lentinula , Cogumelos Shiitake , Brasil , Humanos , Filogenia , Cogumelos Shiitake/genética
4.
Mycoscience ; 63(6): 254-266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37089518

RESUMO

In the search for new strains of edible mushrooms in the Brazilian Amazon Forest, we found Lentinula specimens different from Lentinula raphanica. These were described morphologically and evaluated phylogenetically within the Lentinula clade. The mating system was determined, and interbreeding compatibility with L. raphanica was verified. The basidiomata have a cinnamon or deep orange to fulvous brown, moist to dry pileus, occasionally with whitish scales; crowded whitish cream lamellae; and an eccentric to lateral stipe. The typical, predominant basidiospores are 4.4-7.2 µm in length. Endogenous, elongate (7.8-14 µm) basidiospores were also found in some specimens. The long spores seem rare and occasional, but nonetheless a novelty for the group. Basidia are homogeneous in size, cheilocystidia are pyriform or bulboid, and caulocystidia are long and spheropedunculate. The hyphae of the pileipellis are pigment-encrusted. The characteristics match those of Agaricus ixodes originally described from Guyana, currently a synonym of Lentinula boryana. In the phylogenetic trees, such taxon appears distinct from L. boryana and sister to L. raphanica with strong support. This unique lineage was confirmed to be reproductively isolated from sympatric L. raphanica strains. Lentinula ixodes comb. nov. is the second species of the genus reported in the Amazon Forest.

5.
Mycoscience ; 62(6): 395-405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37090179

RESUMO

A new luminescent lignicolous fungal species, Mycena cristinae sp. nov., is proposed from the Central Amazon forest. This is unique and supported by morphological evaluation along with LSU- and ITS-based phylogenetic analyses. The basidiomata have mostly fuscous olivaceous brown pileus, adnate to subdecurrent and distant lamellae, and stipe with slightly bulbous base (basal mycelium absent). It also has inamyloid and/or weakly amyloid basidiospores, ramose cheilocystidia and a pileipellis composed of an aerated tangle of slender, diverticulate hyphae forming a coralloid pellicle overlaying the hypodermium. The luminescence is evident in the basidiomata (especially the stipe) and in the mycelium on the substrate. The LSU phylogenetic trees reveal that M. cristinae is sister to M. coralliformis within the Mycenaceae clade. In the ITS trees, it forms a unique lineage grouping with undetermined Mycena taxa. Morphological data support M. cristinae as a different species compared to previously described taxa.

6.
Acta amaz ; 50(1): 61-67, jan. - mar. 2020.
Artigo em Inglês | LILACS | ID: biblio-1118663

RESUMO

The high diversity of the genus Geastrum and the difficulty of obtaining mycelial cultures impairs the study of the ecophysiology and the exploration of the biotechnological potential of the taxon. In this study, different culture media were tested to obtain mycelial cultures for G. lloydianum and G. subiculosum collected in the Brazilian Amazon. Data on spore germination, and isolation of monokaryotic cultures and in vitro sexual reproduction are presented, as well as a brief morphological description of the cultures obtained. For both species, Potato Dextrose Agar (PDA) was the most promising of the tested culture media. The highest growth in agar culture ever recorded for this genus is reported (4.9 mm per week for G. lloydianum and 7.5 mm for G. subiculosum). In the PDA culture medium, spores germinated after 35-40 days of incubation and the isolation of monokaryotic cultures of the two species, as well as in vitro sexual crosses, were successfully performed. (AU)


Assuntos
Esporos , Ecossistema Amazônico , Meios de Cultura , Fungos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA