Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37297604

RESUMO

(1) Background: High ambient temperatures are associated with increased morbidity and mortality rates, and some evidence suggests that high temperatures increase the risk of road crashes. However, little is known regarding the burden of road crashes attributable to no-optimal high temperatures in Australia. Therefore, this study examined the effects of high temperatures on road crashes using Adelaide in South Australia as a case study. (2) Methods: Ten-year daily time-series data on road crashes (n = 64,597) and weather during the warm season (October-March) were obtained between 2012 and 2021. A quasi-Poisson distributed lag nonlinear model (DLNM) was used to quantify the cumulative effect of high temperatures over the previous five days. The associations and attributable burden at moderate and extreme temperature ranges were computed as relative risk (RR) and attributable fraction. (3) Results: There was a J-shaped association between high ambient temperature and the risk of road crashes during the warm season in Adelaide, and pronounced effects were observed for minimum temperatures. The highest risk was observed at a 1 day lag and lasting for 5 days. High temperatures were responsible for 0.79% (95% CI: 0.15-1.33%) of road crashes, with moderately high temperatures accounting for most of the burden compared with extreme temperatures (0.55% vs. 0.32%). (4) Conclusions: In the face of a warming climate, the finding draws the attention of road transport, policy, and public health planners to design preventive plans to reduce the risk of road crashes attributable to high temperatures.


Assuntos
Acidentes de Trânsito , Temperatura Alta , Temperatura , Austrália/epidemiologia , Temperatura Baixa
2.
EBioMedicine ; 91: 104582, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37088034

RESUMO

BACKGROUND: Studies have shown that dengue virus transmission increases in association with ambient temperature. We performed a systematic review and meta-analysis to assess the effect of both high temperatures and heatwave events on dengue transmission in different climate zones globally. METHODS: A systematic literature search was conducted in PubMed, Scopus, Embase, and Web of Science from January 1990 to September 20, 2022. We included peer reviewed original observational studies using ecological time series, case crossover, or case series study designs reporting the association of high temperatures and heatwave with dengue and comparing risks over different exposures or time periods. Studies classified as case reports, clinical trials, non-human studies, conference abstracts, editorials, reviews, books, posters, commentaries; and studies that examined only seasonal effects were excluded. Effect estimates were extracted from published literature. A random effects meta-analysis was performed to pool the relative risks (RRs) of dengue infection per 1 °C increase in temperature, and further subgroup analyses were also conducted. The quality and strength of evidence were evaluated following the Navigation Guide systematic review methodology framework. The review protocol has been registered in the International Prospective Register of Systematic Reviews (PROSPERO). FINDINGS: The study selection process yielded 6367 studies. A total of 106 studies covering more than four million dengue cases fulfilled the inclusion criteria; of these, 54 studies were eligible for meta-analysis. The overall pooled estimate showed a 13% increase in risk of dengue infection (RR = 1.13; 95% confidence interval (CI): 1.11-1.16, I2 = 98.0%) for each 1 °C increase in high temperatures. Subgroup analyses by climate zones suggested greater effects of temperature in tropical monsoon climate zone (RR = 1.29, 95% CI: 1.11-1.51) and humid subtropical climate zone (RR = 1.20, 95% CI: 1.15-1.25). Heatwave events showed association with an increased risk of dengue infection (RR = 1.08; 95% CI: 0.95-1.23, I2 = 88.9%), despite a wide confidence interval. The overall strength of evidence was found to be "sufficient" for high temperatures but "limited" for heatwaves. Our results showed that high temperatures increased the risk of dengue infection, albeit with varying risks across climate zones and different levels of national income. INTERPRETATION: High temperatures increased the relative risk of dengue infection. Future studies on the association between temperature and dengue infection should consider local and regional climate, socio-demographic and environmental characteristics to explore vulnerability at local and regional levels for tailored prevention. FUNDING: Australian Research Council Discovery Program.


Assuntos
Dengue , Humanos , Temperatura , Austrália , Risco , Dengue/epidemiologia
4.
Acta Trop ; 231: 106454, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35405101

RESUMO

Ross River virus (RRV) infection is one of the emerging and prevalent arboviral diseases in Australia and the Pacific Islands. Although many studies have been conducted to establish the relationship between temperature and RRV infection, there has been no comprehensive review of the association so far. In this study, we performed a systematic review and meta-analysis to assess the effect of temperature on RRV transmission. We searched PubMed, Scopus, Embase, and Web of Science with additional lateral searches from references. The quality and strength of evidence from the included studies were evaluated following the Navigation Guide framework. We have qualitatively synthesized the evidence and conducted a meta-analysis to pool the relative risks (RRs) of RRV infection per 1 °C increase in temperature. Subgroup analyses were performed by climate zones, temperature metrics, and lag periods. A total of 17 studies met the inclusion criteria, of which six were included in the meta-analysis The meta-analysis revealed that the overall RR for the association between temperature and the risk of RRV infection was 1.09 (95% confidence interval (CI): 1.02, 1.17). Subgroup analyses by climate zones showed an increase in RRV infection per 1 °C increase in temperature in humid subtropical and cold semi-arid climate zones. The overall quality of evidence was "moderate" and we rated the strength of evidence to be "limited", warranting additional evidence to reduce uncertainty. The results showed that the risk of RRV infection is positively associated with temperature. However, the risk varies across different climate zones, temperature metrics and lag periods. These findings indicate that future studies on the association between temperature and RRV infection should consider local and regional climate, socio-demographic, and environmental factors to explore vulnerability at local and regional levels.


Assuntos
Infecções por Alphavirus , Ross River virus , Infecções por Alphavirus/epidemiologia , Clima , Meio Ambiente , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA