Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sci Data ; 11(1): 723, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956059

RESUMO

The Indian black clam Villorita cyprinoides Gray, 1825, is an economically valuable estuarine bivalve that faces challenges from multiple stressors and anthropogenic pressures. However, limited genomic resources have hindered molecular investigations into the impact of these stressors on clam populations. Here, we have generated the first transcriptomic reference datasets for V. cyprinoides to address this knowledge gap. A total of 25,040,592 and 22,486,217 million Illumina paired-end reads generated from two individuals were assembled using Trinity and rnaSPAdes. From the 47,607 transcripts identified as Coding Domain Sequences, 37,487 returned positive BLAST hits against six different databases. Additionally, a total of 14,063 Single Sequence Repeats were identified using GMATA. This study significantly enhances the genetic understanding of V. cyprinoides, a potential candidate for aquaculture that supports the livelihoods of many people dependent on small-scale fisheries. The data generated provides insights into broader genealogical connections within the family Cyrenidae through comparative transcriptomics. Furthermore, this transcriptional profile serves as baseline data for future studies in toxicological and conservation genetics.


Assuntos
Bivalves , Transcriptoma , Animais , Bivalves/genética
2.
Front Plant Sci ; 15: 1353808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463567

RESUMO

The knowledge of pollen morphology, suitable storage condition, and species compatibility is vital for a successful grapevine improvement programme. Ten grape genotypes from three different species, viz., Vitis vinifera L., Vitis parviflora Roxb., and Vitis champini Planc., were studied for their pollen structure and pollen storage with the objective of determining their utilization in grape rootstock improvement programs. Pollen morphology was examined through the use of a scanning electron microscope (SEM). The viability of the pollen was assessed using 2,3,5-triphenyltetrazolium chloride (TTC). In vitro pollen germination was investigated using the semi-solid medium with 10 % sucrose, 100 mg/L boric acid, and 300 mg/L calcium nitrate. The results revealed variations in pollen micro-morphology in 10 genotypes, with distinct pollen dimensions, shapes, and exine ornamentation. However, species-wise, no clear difference was found for these parameters. Pollen of V. parviflora Roxb. and Dogridge was acolporated and did not germinate. The remaining eight genotypes exhibited tricolporated pollen and showed satisfactory in vitro pollen germination. Storage temperature and duration interactions showed that, at room temperature, pollen of most of the grape genotypes can be stored for up to 1 day only with an acceptable pollen germination rate (>30 %). However, storage for up to 7 days was successfully achieved at 4 °C, except for 'Pearl of Csaba'. The most effective storage conditions were found to be at -20 °C and -196 °C (in liquid N2), enabling pollen storage for a period of up to 30 days, and can be used for pollination to overcome the challenge of asynchronous flowering. Four interspecific combinations were studied for their compatibility, among which V. parviflora Roxb. × V. vinifera L. (Pusa Navrang) and V. parviflora Roxb. × V. champini Planc. (Salt Creek) showed high cross-compatibility, offering their potential use for grape rootstock breeding. However, V. parviflora Roxb. × V. vinifera L. (Male Hybrid) recorded the lowest compatibility index among studied crosses. In the case of self-pollinated flowers from V. parviflora Roxb. and V. parviflora Roxb. × V. champini Planc. (Dogridge), pollen failed to germinate on the stigma due to male sterility caused by acolporated pollen. As a result, the flowers of these genotypes functioned as females, which means they are ideal female parents for grape breeding without the need for the tedious process of emasculation.

3.
Sci Data ; 10(1): 97, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797271

RESUMO

Cobia (Rachycentron canadum, Rachycentridae) is one of the prospective species for mariculture. The transcriptome-based study on cobia was hampered by an inadequate reference genome and a lack of full-length cDNAs. We used a long-read based sequencing technology (PacBio Sequel II Iso-Seq3 SMRT) to obtain complete transcriptome sequences from larvae, juveniles, and various tissues of adult cobia, and a single SMRTcell generated 99 gigabytes of data and 51,205,946,694 bases. A total of 8609435, 7441673 and 9140164 subreads were generated from the larval, juvenile, and adult sample pools, with mean sub-read lengths of 2109.9, 1988.2 and 1996.2 bp, respectively. All samples were combined to increase transcript recovery and clustered into 35661 high-quality reads. This is the first report on a full-length transcriptome from R. canadum. Our results illustrate a significant increase in the identified amount of cobia LncRNAs and alternatively spliced transcripts, which will help improve genome annotation. Furthermore, this information will be beneficial for nutrigenomics and functional studies on cobia and other commercially important mariculture species.


Assuntos
Perciformes , Transcriptoma , Animais , Peixes/genética , Larva , Perciformes/genética , Estudos Prospectivos
4.
J Appl Stat ; 49(6): 1364-1381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707118

RESUMO

Rotatable designs that are available for process/ product optimization trials are mostly symmetric in nature. In many practical situations, response surface designs (RSDs) with mixed factor (unequal) levels are more suitable as these designs explore more regions in the design space but it is hard to get rotatable designs with a given level of asymmetry. When experimenting with unequal factor levels via asymmetric second order rotatable design (ASORDs), the lack of fit of the model may become significant which ultimately leads to the estimation of parameters based on a higher (or third) order model. Experimenting with a new third order rotatable design (TORD) in such a situation would be expensive as the responses observed from the first stage runs would be kept underutilized. In this paper, we propose a method of constructing asymmetric TORD by sequentially augmenting some additional points to the ASORDs without discarding the runs in the first stage. The proposed designs will be more economical to obtain the optimum response as the design in the first stage can be used to fit the second order model and with some additional runs, third order model can be fitted without discarding the initial design.

5.
Fish Physiol Biochem ; 48(3): 785-804, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35553294

RESUMO

In a feeding experiment, cottonseed meal (CSM) was used to replace fishmeal (FM) in the diet of snubnose pompano, Trachinotus blochii, supplemented with lysine and methionine to assess the growth, nutritive profile, hematological, histological, and stress biomarker response. Experimental fishes were randomly stocked in five treatments each with triplicates. Five isonitrogenous and isolipidic diets with graded level of CSM (0, 8.7, 17.4, 26.0, and 34.7%) as replacement for FM protein (0, 25, 50, 75, and 100%) were formulated and fed to respective treatments. Comparison between various parameters among the treatments was made using orthogonal polynomial contrasts to indicate the statistical significance. Higher alkaline phosphatase, acid phosphatase, lactate dehydrogenase, malate dehydrogenase, aspartate, and alanine aminotransferase activities were observed in 0CSM group and followed by 100CSM group as higher inclusion level of CSM with higher free gossypol content did not affect the metabolic enzyme activities. The maximum muscular free gossypol accretion of 1.28 mg kg-1 (on wet basis) was recorded in 100CSM group which was very well below the critical limit set by FDA. As a conclusion, fishmeal can be completely replaced using cottonseed meal in the diet of pompano without adverse effect on growth, metabolism, and general health.


Assuntos
Óleo de Sementes de Algodão , Gossipol , Ração Animal/análise , Animais , Biomarcadores , Óleo de Sementes de Algodão/metabolismo , Dieta/veterinária , Peixes/metabolismo , Gossipol/metabolismo , Lisina , Metionina
6.
Foods ; 11(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626980

RESUMO

In this study, we investigated the impact of harvest maturity stages and contrasting growing climates on secondary metabolites in Kinnow mandarin. Fruit samples were harvested at six harvest maturity stages (M1−M6) from two distinct growing locations falling under subtropical−arid (STA) and subtropical−humid (STH) climates. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) technique was employed to identify and quantify secondary metabolites in the fruit juice. A total of 31 polyphenolics and 4 limonoids, with significant differences (p < 0.05) in their concentration, were determined. With advancing maturity, phenolic acids and antioxidant activity were found to increase, whereas flavonoids and limonoids decreased in concentration. There was a transient increase in the concentration of some polyphenolics such as hesperidin, naringin, narirutin, naringenin, neoeriocitrin, rutin, nobiletin and tangeretin, and limonoid aglycones such as limonin and nomilin at mid-maturity stage (M3) which coincided with prevailing low temperature and frost events at growing locations. A higher concentration of limonin and polyphenolics was observed for fruit grown under STH climates in comparison to those grown under STA climates. The data indicate that fruit metabolism during advanced stages of maturation under distinct climatic conditions is fundamental to the flavor, nutrition and processing quality of Kinnow mandarin. This information can help in understanding the optimum maturity stage and preferable climate to source fruits with maximum functional compounds, less bitterness and high consumer acceptability.

7.
J Texture Stud ; 53(6): 870-882, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35583967

RESUMO

The impacts of cocoa solids and coconut sugar on the sensory perception of bean-to-bar dark chocolate were investigated with mixture design using response surface methodology. The maximum and minimum levels of cocoa nib, cocoa butter, and coconut sugar for the preparation of chocolate were 35-50%, 15-30%, and 20-35%, respectively. A suitable mathematical model was used to evaluate each response. Maximum and minimum levels of components caused a poor sensory acceptance of the resultant dark chocolate. The optimum level of independent variables, for the best set of responses, was 44.7% cocoa nib, 25.2% cocoa butter, and 30.2% coconut sugar, with a hedonic score of 8.28 for appearance, 8.64 for mouth feel, 8.71 for texture, 8.68 for taste, and 8.51 for overall acceptability, at a desirability of 0.86. The minimum time for grinding the chocolate mix was 24 hour, which was evident from the microscopic analysis of the chocolate mix. The optimized chocolate (70% dark) per 100 g constitutes 1.06 g moisture, 50.09 g crude fat, 10.37 g crude protein, 35.90 g carbohydrates, and 2.55 g ash content. The L, a, b values indicated a darker color and was stable under ambient condition with a hardness value of 59.52 N, which significantly decreased to 16.23 N within 10 min at ambient temperature (30 ± 2°C). The addition of coconut sugar along with cocoa solids incorporates polyphenols, flavonoids, antioxidant potential, and minerals into bean-to-bar dark chocolate and hence offers a commercial value and health potential for stakeholders.


Assuntos
Cocos , Açúcares
8.
J Sci Food Agric ; 102(12): 5561-5567, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35426150

RESUMO

BACKGROUND: Like other natural pigments, betalains have a stability problem. Copigmentation can be explored to address this issue. In this study, black carrot anthocyanins were used for the first time as copigment with betalains so that copigmented betalains with enhanced stability could be developed to withstand deteriorative processing and storage conditions. RESULTS: Increase in hyperchromic and bathochromic shift with subsequent increase in black carrot anthocyanin extract (0.250 g L-1 ) addition from 0.2 to 1.0 mL L-1 was observed in native betalain pigments from 0.28 to 1.90 and 538 nm to 564 nm, respectively. For maximum recorded bathochromic shift, 0.8 mL L-1 addition of copigment was optimized. Copigmented betalain pigment showed better stability in comparison with native pigment, when exposed to light, temperature more than 60 °C and ≥1.0 g L-1 NaCl. At constant incubation time (3 h), copigmented betalains degraded up to 20.79-41.43% whereas the non-copigmented counterpart degraded up to 83.49-86.86% at 60, 75 and 90 °C, respectively. Lower rate constant (k) and enhanced activation energy (Ea ) showed higher thermostability of copigmented betalains. With constant light exposure, the half-life value of betalains was 145.2 h, which increased approximately twofold (274.08 h) after copigmentation. The t1/2 of betalain pigment at 10%, 15% and 18% salt addition was 81.12, 75.36 and 83.52 h, which increased to 186.96, 226.56 and 152.88 h after copigmentation. CONCLUSION: These findings support that black carrot anthocyanin is a potential and compatible copigment for water-soluble betalain pigment that enhances stability of betalains under extreme processing conditions. © 2022 Society of Chemical Industry.


Assuntos
Antocianinas , Betalaínas , Antocianinas/metabolismo , Cor , Verduras/metabolismo
9.
Int J Biomater ; 2022: 3912290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464636

RESUMO

Objectives: To assess the antibacterial efficacy of experimental dental composite resin with cerium oxide nanoparticles as fillers. Methods: The cerium oxide nanoparticles were prepared by the coprecipitation procedure. Synthesized 3wt% CeO2 nanoparticles were added to the composite resin as antibacterial filler. Experimental composite resin was manually prepared by adding ingredients. The resin matrix consisted of two mixed monomers, bisphenol A-glycidyl methacrylate and triethylene glycol dimethacrylate, diketone as the photo initiator, and N, N-dimethylaminoethyl methacrylate as a coinitiator. The antibacterial efficacy against Streptococcus mutans, Streptococcus mitis, Streptococcus aureus, and Lactobacillus spp. bacterial strains was tested using the microdilution method keeping commercially available 3M Filtek Z250 restorative composite as control. Results: The experimental dental composite demonstrated 99.503% efficacy against Streptococcus mutans, 99.441% efficacy against Streptococcus mitis, 99.416% efficacy against Streptococcus aureus, and 99.233% efficacy against Lactobacillus spp. Conclusion: Integrating cerium oxide nanoparticles as fillers into dental composite resin can be promising in terms of antibacterial activity, provided furthermore study has to be conducted to examine other properties. Clinical Significance. Previous studies attempted adding CeO2 nanoparticles into acrylic resins that showed improvement in mechanical properties, but literature is nil on the dental composite resin and cerium oxide nanoparticles. This study demonstrates the development of an experimental antibacterial dental composite resin that can resolve most of the problems related to secondary caries around dental composite restorations.

10.
Environ Sci Pollut Res Int ; 29(53): 80005-80020, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35220535

RESUMO

Based on our previous study in minimal medium, Kocuria rosea and Aspergillus sydowii were identified as the best microbes for degradation of mixture of polyaromatic hydrocarbons (PAHs). The present study reports PAH degradation potential of these microbes in free and immobilized form. PAHs were extracted using QuEChERS-mediated process followed by quantification by high performance liquid chromatography. The microbial consortium of Kocuria rosea + Aspergillus sydowii was formulated in three bio-formulations, namely (i) bentonite-alginate composite beads; (ii) water dispersible granule composite using guar gum-nanobentonite; and (iii) composites of carboxymethyl cellulose-bentonite and were applied in PAH fortified (100 µg g-1) sandy loam soil. Results suggested that degradation data fitted well to first order kinetics as in most of the cases, the values of correlation coefficient (r) were > 0.95. The half-life (t1/2) values for PAHs in the uninoculated control soil were: naphthalene (10.43 d), fluorene (22.43 d), phenanthrene (24.64 d), anthracene (38.47 d), and pyrene (34.34 d). Inoculation of soil with free culture microbial consortium (without or with nutrient) and bio-formulation of degrading cultures enhanced degradation of all PAHs and half-life values were significantly reduced for each PAH: naphthalene (1.76-2.00 d), fluorene (2.52-6.65 d), phenanthrene (4.61-6.37 d), anthracene (9.01-12.22 d), and pyrene (10.98-15.55 d). Among different bio-formulations, guar gum-nanobentonite-based composite exhibited better efficacy for degradation of naphthalene, fluorene, phenanthrene, anthracene, and pyrene. The addition of microbial consortium in PAH fortified soil increased 16S rRNA gene copies of Alphaproteobacteria and Bacteroidetes, compared to the uninoculated, PAH-fortified control. The microbial functional gene assays showed that the gene copies of amoA, nirK, nirS, and anammox increased, suggesting nitrogen regulation in the PAH-fortified soil.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , Microbiologia do Solo , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , RNA Ribossômico 16S/genética , Areia , Bentonita , Carboximetilcelulose Sódica , Pirenos , Naftalenos , Fluorenos , Antracenos , Nitrogênio , Água , Alginatos
11.
Physiol Mol Biol Plants ; 27(8): 1811-1821, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34539118

RESUMO

This study was aimed to assess the effects of calcium lactate (CL) on quality, shelf-life and storage physiology of bitter gourd. Fruits were dipped in the aqueous solution of CL (50, 75, and 100 mM) and stored at 10 °C and 85-95% relative humidity (RH). The changes in physical, biochemical and enzymological parameters were recorded at five days interval. The results showed that in CL@100 mM treated fruit, physiological loss in weight (PLW) and decay incidence were minimized. Conversely, their firmness, total phenolics, antioxidants and total chlorophyll retained at higher side. The CL @ 75 mM was able to retain higher ascorbic acid up to 20 days while CL@100 mM was effective in controlling pectin methylesterase (PME) activity and increasing the inhibitory activity of α-amylase and α-glucosidase. Therefore, our observations suggested that by applying CL@100 mM, 5 days extra (20 days) shelf-life of bitter gourd fruit can be achieved with notable retention of biochemical compounds over untreated fruit (15 days with poor retention of important nutrients).

12.
Curr Microbiol ; 78(6): 2429-2439, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33983480

RESUMO

Agricultural productivity is threatened by increasing incidence of drought and the drought tolerant cyanobacteria offer a better solution in the restoration of soil fertility and productivity. The present study describes the comparative physiological response of the cyanobacterium Anabaena sp. acclimated and un-acclimated to desiccation stress induced by polyethylene glycol (10% PEG). While, the acclimated cyanobacterial cells grew luxuriantly with optimal chlorophyll content, photosynthetic activities and nitrogen fixation, the un-acclimated cells exhibited reduced growth rate, chlorophyll content, photosynthetic activities and nitrogen fixation. Distinct differences in the accumulation of lipid peroxidation products, proline and activity of superoxide dismutase were observed under identical growth conditions in the acclimated and un-acclimated cells. Desiccation-acclimated and un-acclimated cyanobacteria showed significant alterations in the abundance of important proteins in the proteome. Two-dimensional gel electrophoresis followed by MALDI-TOF-MS/MS analysis identified twelve proteins. The acclimated cells showed the up regulation of proteins such as Rubisco, fructose-bis-phosphate aldolase, fructose 1-6 bisphosphatase, phosphoglycerate dehydrogenase and elongation factors Tu and Ts as compared to un-acclimated cells. Therefore, the ability to maintain photosynthesis, antioxidants and increased accumulation of proteins related to energy metabolism helped the acclimated cyanobacterium Anabaena sp. to grow optimally under desiccation stress conditions.


Assuntos
Anabaena , Proteômica , Anabaena/genética , Anabaena/metabolismo , Dessecação , Fotossíntese , Proteoma/metabolismo , Estresse Fisiológico , Espectrometria de Massas em Tandem
13.
Food Chem ; 334: 127561, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711272

RESUMO

Grapefruit (Citrus paradisi) peel (GP) is rich in flavonoids and phenolics which have several proven pharmacological effects. However, their chemical instability towards oxygen, light and heat limits its applications in food industries. In the present study, we evaluated the feasibility of fabricating grapefruit-peel-phenolic (GPP) nano-emulsion in mustard oil using ultrasonication. Response surface methodology (RSM) optimization revealed that sonication time of 9.5 min at 30% amplitude and 0.52% Span-80 produced the stable GPP nano-emulsion with a droplet size of 29.73 ± 1.62 nm. Results indicate that both ultrasonication and Span-80 can assist the fabrication of a stabilized nano-emulsion. This study is one of its kind where nano-encapsulation of GPP into W/O emulsion was done to stabilize the active compound inside mustard oil and then the nano-emulsion was used to extend oxidative stability of mustard oil. Findings provide a basic guideline to formulate stable nano-emulsions for their use in active food packaging, oils, and pharmaceuticals.


Assuntos
Citrus paradisi/química , Emulsões/química , Mostardeira/química , Nanoestruturas/química , Óleos de Plantas/química , Polifenóis/química , Antioxidantes/química , Armazenamento de Alimentos , Frutas/química , Hexoses/química , Oxirredução , Sonicação
14.
Bull Environ Contam Toxicol ; 104(4): 503-510, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32064538

RESUMO

Kresoxim methyl sorption in soils of five agro-climatic zones of India varied from 41.6% to 84.7%. Highest sorption was recorded in organic carbon rich Almora soil. Isotherm parameters for linear and non-linear Freundlich and Temkin models were almost same, whereas Langmuir parameter Q0, for linear (1.60 to 9.434 µg g-1) and non-linear (8.48 to 17.129 µg g-1) models were quite different. For isotherms optimization different error functions such as sum of squares error (SSE), root mean square error (RMSE), Chi square error, hybrid fractional error (HYBRID) and average relative error (ARE) were calculated. Lowest error function values were obtained for Freundlich isotherm in all the soils except inceptisol (Kolkata) for which Langmuir isotherm gave the best fit. Statistical analysis using SAS 9.3 software and Tukey's HSD test revealed the significant effect (p < 0.001) of soil type on sorption. Sorption correlated positively with the organic carbon and clay contents of the soil.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Poluentes do Solo/análise , Solo/química , Estrobilurinas/análise , Adsorção , Agricultura , Índia , Modelos Lineares , Dinâmica não Linear
15.
Int J Biol Macromol ; 135: 1070-1081, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176863

RESUMO

The present study compares three methods viz. microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE) and conventional solvent extraction (CSE) for extraction of polyphenolic compounds from Black Soybean Seed coat (BSSC). Box-Behnken design using response surface methodology (RSM) was employed to investigate and optimize the MAE and EAE for maximum bioactive content, antioxidant activity, colour density and minimum degradation parameters from BSSC. Optimized MAE conditions for BSSC were: microwave power of 569.46 W, extraction time of 262.54 s, solvent to solid ratio of 40:1 and ethanol concentration (59.99). The predicted anthocyanin content was 5021.47 mg/l, close to experimental optimized value of 5094.9 mg/l with minimum values of degradation parameters viz., Polymeric Colour (PC) (0.131 ±â€¯0.01), Browning Index (BI) (0.202 ±â€¯0.02) and Degradation Index (DI) (0.140 ±â€¯0.02). Overall results clearly indicate that MAE is the best suited method for extraction in comparison to EAE and CSE. The phenolic rich extract can be used as an effective functional ingredient in foods.


Assuntos
Antocianinas/química , Antocianinas/isolamento & purificação , Enzimas/química , Glycine max/química , Micro-Ondas , Fenóis/química , Fenóis/isolamento & purificação , Sementes/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Modelos Químicos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
16.
J Food Sci Technol ; 56(3): 1221-1233, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30956302

RESUMO

The phenolics from grapefruit peel were obtained by ultrasound assisted extraction (UAE) and enzyme-assisted extraction (EAE). Extraction parameters were optimized using response surface methodology to maximize the yield of total phenolic content (TPC) and total flavonoid content (TFC). The optimized extracts from UAE and EAE were then compared with conventional solvent extraction for their TPC, TFC, antioxidant activity and phenolic composition. The best optimized conditions for UAE was obtained at 33.12 min extraction time, 71.11% amplitude and a solvent-solid (SS) ratio of 39.63 mL/g. The optimized parameters for EAE were 4.81 h extraction time, 0.9% enzyme concentration and 40 mL/g SS ratio. Similar values of experimental and predicted TPC and TFC at optimized conditions indicates the suitability of the quadratic model in optimizing the extraction parameters. Further characterization of extracts suggested EAE as most efficient process in extracting bioactive compounds.

17.
J Food Sci Technol ; 56(2): 995-1007, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30906057

RESUMO

The present study compares three methods viz. microwave assisted extraction (MAE), ultrasonic-assisted extraction (UAE) and conventional solvent extraction (CSE) for extraction of phenolic compounds from black carrot pomace (BCP). BCP is the major by-product generated during processing and poses big disposal problem. Box-Behnken design using response surface methodology was employed to investigate and optimize the MAE of phenolics, antioxidant activity and colour density from BCP. The conditions for maximum recovery of polyphenolics were: microwave power (348.07 W), extraction time (9.8 min), solvent-solid ratio (19.3 mL/g) and ethanol concentration (19.8%). Under these conditions, the extract contained total phenolic content of 264.9 ± 10.02 mg gallic acid equivalents (GAE)/100 mL, antioxidant capacity (AOC) of 13.14 ± 1.05 µmol Trolox equivalents (TE)/mL and colour density of 68.63 ± 5.40 units. The total anthocyanin content at optimized condition was 753.40 ± 31.6 mg/L with low % polymeric colour of 7.40 ± 0.42. At optimized conditions, MAE yielded higher colour density (68.63 ± 5.40), polyphenolic content (264.9 ± 10.025 mg GAE/100 mL) and AOC (13.14 ± 1.05 µmol TE/mL) in a short time as compared to UAE and CSE. Overall results clearly indicate that MAE is the best suited method for extraction in comparison to UAE and CSE. The phenolic rich extract can be used as an effective functional ingredient in foods.

19.
Artigo em Inglês | MEDLINE | ID: mdl-30320081

RESUMO

Economics of ethanol production from lignocellulosic biomass depends on complete utilization of constituent carbohydrates and efficient fermentation of mixed sugars present in biomass hydrolysates. Saccharomyces cerevisiae, the commercial strain for ethanol production uses only glucose while pentoses remain unused. Recombinant strains capable of utilizing pentoses have been engineered but with limited success. Recently, presence of endogenous pentose assimilation pathway in S. cerevisiae was reported. On the contrary, evolutionary engineering of native xylose assimilating strains is promising approach. In this study, a native strain S. cerevisiae LN, isolated from fruit juice, was found to be capable of xylose assimilation and mixed sugar fermentation. Upon supplementation with yeast extract and peptone, glucose (10%) fermentation efficiency was 78% with ~90% sugar consumption. Medium engineering augmented mixed sugars (5% glucose + 5% xylose) fermentation efficiency to ~50 and 1.6% ethanol yield was obtained with concomitant sugar consumption ~60%. Statistical optimization of input variables Glucose (5.36%), Xylose (3.30%), YE (0.36%), and peptone (0.25%) with Response surface methodology led to improved sugar consumption (74.33%) and 2.36% ethanol within 84 h. Specific activities of Xylose Reductase and Xylitol Dehydrogenase exhibited by S. cerevisiae LN were relatively low. Their ratio indicated metabolism diverted toward ethanol than xylitol and other byproducts. Strain was tolerant to concentrations of HMF, furfural and acetic acid commonly encountered in biomass hydrolysates. Thus, genetic setup for xylose assimilation in S. cerevisiae LN is not merely artifact of xylose metabolizing pathway and can be augmented by adaptive evolution. This strain showed potential for commercial exploitation.

20.
J Food Sci Technol ; 55(8): 3221-3231, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30065433

RESUMO

Processed potato products such as potato chips are widely consumed among vulnerable (children and teenager), therefore can be used as an ideal carrier for targeted nutrient's delivery i.e. macronutrient calcium. The present study was carried out to standardize the process for development of calcium fortified potato chips through vacuum impregnation technique and to explore the acceptability of developed product through storage study of 3 months period at ambient storage conditions (~ 250 °C, 51% RH) in LDPE (low density polyethylene) packaging. Fortification of potato chips was done at 15 mm Hg vacuum pressure with GRAS fortificant of calcium (calcium chloride, E509) using different combinations of blanching time, vacuum time, and restoration time as per Box-Behnken design of response surface methodology. optimization was done on the basis of fortified calcium content as well as hardness of the end product. Results showed optimized process conditions (calcium chloride at 1.05% level, blanching for 1.69 min, vacuum exposure for 14.99 min, and rest time of 15.80 min) can fortify potato chips at 700 mg/100 g of calcium level with acceptable sensory attributes. The standardized product was also evaluated for its structural attributes through surface electron microscopy, flavor (umami) compounds along with shelf life. The developed fortified product has 4.5 and 7.1 times higher calcium content than its control and commercial counterparts respectively. Storage studies parameters (FFA value, PV value, sensory attributes and non enzymatic browning) showed that the fortified potato chips were acceptable up to 60 days of storage at ambient condition. Thus, calcium fortification through vacuum impregnation technique for a widely acceptable potato based snacks can be helpful in changing the perception of consumers for potato based snacks from the category of 'Junk food to Healthy food'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA