Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 34(9): 1918-1929.e5, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38636514

RESUMO

The insular cortex, or insula, is a large brain region involved in the detection of thirst and the regulation of water intake. However, our understanding of the topographical, circuit, and molecular mechanisms for controlling water intake within the insula remains parcellated. We found that type-1 cannabinoid (CB1) receptors in the insular cortex cells participate in the regulation of water intake and deconstructed the circuit mechanisms of this control. Topographically, we revealed that the activity of excitatory neurons in both the anterior insula (aIC) and posterior insula (pIC) increases in response to water intake, yet only the specific removal of CB1 receptors in the pIC decreases water intake. Interestingly, we found that CB1 receptors are highly expressed in insula projections to the basolateral amygdala (BLA), while undetectable in the neighboring central part of the amygdala. Thus, we recorded the neurons of the aIC or pIC targeting the BLA (aIC-BLA and pIC-BLA) and found that they decreased their activity upon water drinking. Additionally, chemogenetic activation of pIC-BLA projection neurons decreased water intake. Finally, we uncovered CB1-dependent short-term synaptic plasticity (depolarization-induced suppression of excitation [DSE]) selectively in pIC-BLA, compared with aIC-BLA synapses. Altogether, our results support a model where CB1 receptor signaling promotes water intake by inhibiting the pIC-BLA pathway, thereby contributing to the fine top-down control of thirst responses.


Assuntos
Ingestão de Líquidos , Córtex Insular , Receptor CB1 de Canabinoide , Animais , Receptor CB1 de Canabinoide/metabolismo , Masculino , Camundongos , Ingestão de Líquidos/fisiologia , Córtex Insular/fisiologia , Canabinoides/metabolismo , Canabinoides/farmacologia , Neurônios/fisiologia , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Complexo Nuclear Basolateral da Amígdala/metabolismo
3.
Cell Rep ; 40(8): 111202, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001978

RESUMO

Perisomatic inhibition of pyramidal neurons (PNs) coordinates cortical network activity during sensory processing, and this role is mainly attributed to parvalbumin-expressing basket cells (BCs). However, cannabinoid receptor type 1 (CB1)-expressing interneurons are also BCs, but the connectivity and function of these elusive but prominent neocortical inhibitory neurons are unclear. We find that their connectivity pattern is visual area specific. Persistently active CB1 signaling suppresses GABA release from CB1 BCs in the medial secondary visual cortex (V2M), but not in the primary visual cortex (V1). Accordingly, in vivo, tonic CB1 signaling is responsible for higher but less coordinated PN activity in the V2M than in the V1. These differential firing dynamics in the V1 and V2M can be captured by a computational network model that incorporates visual-area-specific properties. Our results indicate a differential CB1-mediated mechanism controlling PN activity, suggesting an alternative connectivity scheme of a specific GABAergic circuit in different cortical areas.


Assuntos
Endocanabinoides , Neocórtex , Interneurônios/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Receptor CB1 de Canabinoide , Ácido gama-Aminobutírico/fisiologia
4.
Cell Rep ; 37(12): 110133, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936875

RESUMO

Intracellular calcium signaling underlies the astroglial control of synaptic transmission and plasticity. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is unexplored. We found that the activation of astrocyte mitochondrial-associated type-1 cannabinoid (mtCB1) receptors determines MERC-dependent intracellular calcium signaling and synaptic integration. The stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through a specific molecular cascade, involving the mitochondrial calcium uniporter (MCU). Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that conditional genetic exclusion of mtCB1 receptors or dominant-negative MCU expression in astrocytes blocks lateral synaptic potentiation, through which astrocytes integrate the activity of distant synapses. Altogether, these data reveal an endocannabinoid link between astroglial MERCs and the regulation of brain network functions.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Canabinoides/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Receptores de Canabinoides/fisiologia , Sinapses/fisiologia , Animais , Astrócitos/citologia , Canais de Cálcio/fisiologia , Sinalização do Cálcio , Células Cultivadas , Hipocampo/metabolismo , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Transmissão Sináptica
5.
Neuron ; 109(9): 1513-1526.e11, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33770505

RESUMO

Recent advances in neuroscience have positioned brain circuits as key units in controlling behavior, implying that their positive or negative modulation necessarily leads to specific behavioral outcomes. However, emerging evidence suggests that the activation or inhibition of specific brain circuits can actually produce multimodal behavioral outcomes. This study shows that activation of a receptor at different subcellular locations in the same neuronal circuit can determine distinct behaviors. Pharmacological activation of type 1 cannabinoid (CB1) receptors in the striatonigral circuit elicits both antinociception and catalepsy in mice. The decrease in nociception depends on the activation of plasma membrane-residing CB1 receptors (pmCB1), leading to the inhibition of cytosolic PKA activity and substance P release. By contrast, mitochondrial-associated CB1 receptors (mtCB1) located at the same terminals mediate cannabinoid-induced catalepsy through the decrease in intra-mitochondrial PKA-dependent cellular respiration and synaptic transmission. Thus, subcellular-specific CB1 receptor signaling within striatonigral circuits determines multimodal control of behavior.


Assuntos
Encéfalo/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Catalepsia/induzido quimicamente , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
6.
Curr Biol ; 30(23): 4789-4798.e4, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33035479

RESUMO

Water intake is crucial for maintaining body fluid homeostasis and animals' survival [1-4]. In the brain, complex processes trigger thirst and drinking behavior [1-5]. The anterior wall of the third ventricle formed by the subfornical organ (SFO), the median preoptic nucleus, and the organum vasculosum of the lamina terminalis (OVLT) constitute the primary structures sensing thirst signals and modulating water intake [6-10]. These subcortical regions are connected with the neocortex [11]. In particular, insular and anterior cingulate cortices (IC and ACC, respectively) have been shown to receive indirect innervations from the SFO and OVLT in rats [11] and to be involved in the control of water intake [12-15]. Type-1 cannabinoid receptors (CB1) modulate consummatory behaviors, such as feeding [16-26]. However, the role of CB1 receptors in the control of water intake is still a matter of debate [27-31]. Here, we show that endogenous activation of CB1 in cortical glutamatergic neurons of the ACC promotes water intake. Notably, presynaptic CB1 receptors of ACC glutamatergic neurons are abundantly located in the basolateral amygdala (BLA), a key area in the regulation of water intake. The selective expression of CB1 receptors in the ACC-to-BLA-projecting neurons is sufficient to stimulate drinking behavior. Moreover, chemogenetic stimulation of these projecting neurons suppresses drinking behavior, further supporting the role of this neuronal population in the control of water intake. Altogether, these data reveal a novel cortico-amygdalar mechanism involved in the regulation of drinking behavior.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Ingestão de Líquidos/fisiologia , Giro do Cíngulo/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/citologia , Genes Reporter , Giro do Cíngulo/citologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Vias Neurais/fisiologia , Neurônios/metabolismo , Sede/fisiologia
7.
Autophagy ; 16(12): 2289-2291, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32981464

RESUMO

The recreational and medical use of cannabis is largely increasing worldwide. Cannabis use, however, can cause adverse side effects, so conducting innovative studies aimed to understand and potentially reduce cannabis-evoked harms is important. Previous research conducted on cultured neural cells had supported that CNR1/CB1R (cannabinoid receptor 1), the main molecular target of cannabis, affects macroautophagy/autophagy. However, it was not known whether CNR1 controls autophagy in the brain in vivo, and, eventually, what the functional consequences of a potential CNR1-autophagy connection could be. We have now found that Δ9-tetrahydrocannabinol (THC), the major intoxicating constituent of cannabis, impairs autophagy in the mouse striatum. Administration of autophagy activators (specifically, the rapalog temsirolimus and the disaccharide trehalose) rescues THC-induced autophagy inhibition and motor dyscoordination. The combination of various genetic strategies in vivo supports the idea that CNR1 molecules located on neurons belonging to the direct (striatonigral) pathway are required for the autophagy- and motor-impairing activity of THC. By identifying autophagy as a mechanistic link between THC and motor performance, our findings may open a new conceptual view on how cannabis acts in the brain.


Assuntos
Canabinoides , Animais , Autofagia , Encéfalo , Dronabinol/farmacologia , Camundongos
8.
Front Cell Dev Biol ; 8: 681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903776

RESUMO

Reg-1α belongs to the Reg family of small, secreted proteins expressed in both pancreas and nervous system. Reg-1α is composed of two domains, an insoluble C-type lectin domain and a short soluble N-terminal peptide, which is released from the molecule upon proteolytic N-terminal processing, although the biological significance of this proteolysis remains unclear. We have previously shown that binding of Reg-1α to its receptor Extl3 stimulates axonal outgrowth. Reg-1α and Extl3 genes are expressed in the developing cortex but their expression decreases in adulthood, pointing to a possible function of this signaling system at the early developmental stages. Here, we demonstrate that recombinant Reg-1α increases migration and differentiation of cultured embryonic rat telencephalic progenitors via the activation of GSK-3ß activity. In vivo overexpression of Reg-1α by in utero electroporation, has a similar effect, favoring premature differentiation of cortical progenitors. Notably, the N-terminal soluble domain, but not the C-type lectin domain, is largely responsible for Reg-1α effects on cortical neuronal differentiation. We thus conclude that Reg-1α via its proteolytically generated N-terminal domain is required for basic development processes.

9.
Cell Rep ; 32(7): 108046, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814049

RESUMO

A complex array of inhibitory interneurons tightly controls hippocampal activity, but how such diversity specifically affects memory processes is not well understood. We find that a small subclass of type 1 cannabinoid receptor (CB1R)-expressing hippocampal interneurons determines episodic-like memory consolidation by linking dopamine D1 receptor (D1R) signaling to GABAergic transmission. Mice lacking CB1Rs in D1-positive cells (D1-CB1-KO) display impairment in long-term, but not short-term, novel object recognition memory (NOR). Re-expression of CB1Rs in hippocampal D1R-positive cells rescues this NOR deficit. Learning induces an enhancement of in vivo hippocampal long-term potentiation (LTP), which is absent in mutant mice. CB1R-mediated NOR and the associated LTP facilitation involve local control of GABAergic inhibition in a D1-dependent manner. This study reveals that hippocampal CB1R-/D1R-expressing interneurons control NOR memory, identifying a mechanism linking the diversity of hippocampal interneurons to specific behavioral outcomes.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Masculino , Camundongos
10.
Elife ; 92020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32773031

RESUMO

The use of cannabis is rapidly expanding worldwide. Thus, innovative studies aimed to identify, understand and potentially reduce cannabis-evoked harms are warranted. Here, we found that Δ9-tetrahydrocannabinol, the psychoactive ingredient of cannabis, disrupts autophagy selectively in the striatum, a brain area that controls motor behavior, both in vitro and in vivo. Boosting autophagy, either pharmacologically (with temsirolimus) or by dietary intervention (with trehalose), rescued the Δ9-tetrahydrocannabinol-induced impairment of motor coordination in mice. The combination of conditional knockout mouse models and viral vector-mediated autophagy-modulating strategies in vivo showed that cannabinoid CB1 receptors located on neurons belonging to the direct (striatonigral) pathway are required for the motor-impairing activity of Δ9-tetrahydrocannabinol by inhibiting local autophagy. Taken together, these findings identify inhibition of autophagy as an unprecedented mechanistic link between cannabinoids and motor performance, and suggest that activators of autophagy might be considered as potential therapeutic tools to treat specific cannabinoid-evoked behavioral alterations.


Assuntos
Autofagia/efeitos dos fármacos , Canabinoides/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Putamen/fisiologia , Substância Negra/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Putamen/efeitos dos fármacos , Substância Negra/efeitos dos fármacos
11.
Nature ; 583(7817): 603-608, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641832

RESUMO

Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses1-5. By contrast, astrocytes are under neuronal control through specific neurotransmitter receptors5-7. However, whether the activation of astroglial receptors can directly regulate cellular glucose metabolism to eventually modulate behavioural responses is unclear. Here we show that activation of mouse astroglial type-1 cannabinoid receptors associated with mitochondrial membranes (mtCB1) hampers the metabolism of glucose and the production of lactate in the brain, resulting in altered neuronal functions and, in turn, impaired behavioural responses in social interaction assays. Specifically, activation of astroglial mtCB1 receptors reduces the phosphorylation of the mitochondrial complex I subunit NDUFS4, which decreases the stability and activity of complex I. This leads to a reduction in the generation of reactive oxygen species by astrocytes and affects the glycolytic production of lactate through the hypoxia-inducible factor 1 pathway, eventually resulting in neuronal redox stress and impairment of behavioural responses in social interaction assays. Genetic and pharmacological correction of each of these effects abolishes the effect of cannabinoid treatment on the observed behaviour. These findings suggest that mtCB1 receptor signalling can directly regulate astroglial glucose metabolism to fine-tune neuronal activity and behaviour in mice.


Assuntos
Astrócitos/metabolismo , Metabolismo Energético , Glucose/metabolismo , Mitocôndrias/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Células Cultivadas , Dronabinol/farmacologia , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Oxirredução , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Receptor CB1 de Canabinoide/agonistas , Comportamento Social
12.
Neuroscience ; 433: 121-131, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32171820

RESUMO

In the olfactory system, the endocannabinoid system (ECS) regulates sensory perception and memory. A major structure involved in these processes is the anterior piriform cortex (aPC), but the impact of ECS signaling in aPC circuitry is still scantly characterized. Using ex vivo patch clamp experiments in mice and neuroanatomical approaches, we show that the two major forms of ECS-dependent synaptic plasticity, namely depolarization-dependent suppression of inhibition (DSI) and long-term depression of inhibitory transmission (iLTD) are present in the aPC. Interestingly, iLTD expression depends on layer localization of the inhibitory neurons associated with the expression of the neuropeptide cholecystokinin. Conversely, the decrease of inhibitory transmission induced by exogenous cannabinoid agonists or DSI do not seem to be impacted by these factors. Altogether, these results indicate that CB1 receptors exert an anatomically specific and differential control of inhibitory plasticity in the aPC, likely involved in spatiotemporal regulation of olfactory processes.


Assuntos
Córtex Piriforme , Animais , Agonistas de Receptores de Canabinoides , Endocanabinoides , Camundongos , Plasticidade Neuronal , Receptor CB1 de Canabinoide , Receptores de Canabinoides
13.
Curr Biol ; 29(15): 2455-2464.e5, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31327715

RESUMO

The retrieval of odor-related memories shapes animal behavior. The anterior piriform cortex (aPC) is the largest part of the olfactory cortex, and it plays important roles in olfactory processing and memory. However, it is still unclear whether specific cellular mechanisms in the aPC control olfactory memory, depending on the appetitive or aversive nature of the stimuli involved. Cannabinoid-type 1 (CB1) receptors are present in the aPC (aPC-CB1), but their potential impact on olfactory memory was never explored. Here, we used a combination of behavioral, genetic, anatomical, and electrophysiological approaches to characterize the functions of aPC-CB1 receptors in the regulation of appetitive and aversive olfactory memory. Pharmacological blockade or genetic deletion of aPC-CB1 receptors specifically impaired the retrieval of conditioned odor preference (COP). Interestingly, expression of conditioned odor aversion (COA) was unaffected by local CB1 receptor blockade, indicating that the role of aPC endocannabinoid signaling is selective for retrieval of appetitive memory. Anatomical investigations revealed that CB1 receptors are highly expressed on aPC GABAergic interneurons, and ex vivo electrophysiological recordings showed that their pharmacological activation reduces miniature inhibitory post-synaptic currents (mIPSCs) onto aPC semilunar (SL), but not pyramidal principal neurons. COP retrieval, but not COA, was associated with a specific CB1-receptor-dependent decrease of mIPSCs in SL cells. Altogether, these data indicate that aPC-CB1 receptor-dependent mechanisms physiologically control the retrieval of olfactory memory, depending on odor valence and engaging modulation of local inhibitory transmission.


Assuntos
Memória , Percepção Olfatória , Córtex Piriforme/fisiologia , Receptor CB1 de Canabinoide/genética , Olfato , Animais , Masculino , Camundongos , Odorantes , Receptor CB1 de Canabinoide/metabolismo
14.
JCI Insight ; 4(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843884

RESUMO

The lack of intrinsic motivation to engage in, and adhere to, physical exercise has major health consequences. However, the neurobiological bases of exercise motivation are still unknown. This study aimed at examining whether the endocannabinoid system (ECS) is involved in this process. To do so, we developed an operant conditioning paradigm wherein mice unlocked a running wheel with nose pokes. Using pharmacological tools and conditional mutants for cannabinoid type-1 (CB1) receptors, we provide evidence that CB1 receptors located on GABAergic neurons are both necessary and sufficient to positively control running motivation. Conversely, this receptor population proved dispensable for the modulation of running duration per rewarded sequence. Although the ECS mediated the motivation for another reward, namely palatable food, such a regulation was independent from CB1 receptors on GABAergic neurons. In addition, we report that the lack of CB1 receptors on GABAergic neurons decreases the preference for running over palatable food when mice were proposed an exclusive choice between the two rewards. Beyond providing a paradigm that enables motivation processes for exercise to be dissected either singly or in concurrence, this study is the first to our knowledge to identify a neurobiological mechanism that might contribute to sedentary behavior.


Assuntos
Motivação/fisiologia , Condicionamento Físico Animal , Receptor CB1 de Canabinoide/metabolismo , Animais , Comportamento Animal , Condicionamento Operante , Dopaminérgicos , Comportamento Alimentar , Haloperidol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Receptor CB1 de Canabinoide/genética , Corrida
15.
Neuron ; 99(6): 1247-1259.e7, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30174119

RESUMO

By priming brain circuits, associations between low-salience stimuli often guide future behavioral choices through a process known as mediated or inferred learning. However, the precise neurobiological mechanisms of these incidental associations are largely unknown. Using sensory preconditioning procedures, we show that type 1 cannabinoid receptors (CB1R) in hippocampal GABAergic neurons are necessary and sufficient for mediated but not direct learning. Deletion and re-expression of CB1R in hippocampal GABAergic neurons abolishes and rescues mediated learning, respectively. Interestingly, paired presentations of low-salience sensory cues induce a specific protein synthesis-dependent enhancement of hippocampal CB1R expression and facilitate long-term synaptic plasticity at inhibitory synapses. CB1R blockade or chemogenetic manipulations of hippocampal GABAergic neurons upon preconditioning affect incidental associations, as revealed by impaired mediated learning. Thus, CB1R-dependent control of inhibitory hippocampal neurotransmission mediates incidental associations, allowing future associative inference, a fundamental process for everyday life, which is altered in major neuropsychiatric diseases. VIDEO ABSTRACT.


Assuntos
Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Sinapses/fisiologia , Animais , Neurônios GABAérgicos/metabolismo , Camundongos , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia
16.
Neuron ; 98(5): 935-944.e5, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29779943

RESUMO

Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB1 receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB1 receptors from astroglial cells (GFAP-CB1-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB1 receptors increased intracellular astroglial Ca2+ levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB1-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB1-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs.


Assuntos
Astrócitos/metabolismo , Neurônios/metabolismo , Receptor CB1 de Canabinoide/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Reconhecimento Psicológico/fisiologia , Serina/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Hipocampo , Técnicas In Vitro , Potenciação de Longa Duração , Memória , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Receptor CB1 de Canabinoide/metabolismo
17.
Nature ; 539(7630): 555-559, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27828947

RESUMO

Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.


Assuntos
Canabinoides/efeitos adversos , Transtornos da Memória/induzido quimicamente , Memória/efeitos dos fármacos , Memória/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Adenilil Ciclases/metabolismo , Animais , Canabinoides/metabolismo , Respiração Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Transtornos da Memória/enzimologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , NADH Desidrogenase/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Receptor CB1 de Canabinoide/deficiência , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
18.
Biomacromolecules ; 16(11): 3425-33, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26397709

RESUMO

Dendrimers are polyfunctional nano-objects of perfectly defined structure that can provide innovative alternatives for the treatment of chronic inflammatory diseases, including multiple sclerosis (MS). To investigate the efficiency of a recently described amino-bis(methylene phosphonate)-capped ABP dendrimer as a potential drug candidate for MS, we used the classical mouse model of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE). Our study provides evidence that the ABP dendrimer prevents the development of EAE and inhibits the progression of established disease with a comparable therapeutic benefit as the approved treatment Fingolimod. We also show that the ABP dendrimer redirects the pathogenic myelin-specific CD4(+) T cell response toward IL-10 production.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Dendrímeros/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-10/metabolismo , Fósforo/farmacologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Dendrímeros/química , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Fósforo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA