Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(27): 14086-14098, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38934738

RESUMO

Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m-2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m-2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.


Assuntos
Aldeídos , Peroxidase do Rábano Silvestre , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Aldeídos/química , Polímeros/química , Adsorção , Propriedades de Superfície , Enzimas Imobilizadas/química
2.
Chem Sci ; 15(12): 4396-4402, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516085

RESUMO

Incorporating nucleobases into synthetic polymers has proven to be a versatile method for controlling self-assembly. The formation of strong directional hydrogen bonds between complementary nucleobases provides a driving force that permits access to complex particle morphologies. Here, nucleobase pairing was used to direct the formation and lengthening of nodes on the outer surface of vesicles formed from polymers (polymersomes) functionalised with adenine in their membrane-forming domains. Insertion of a self-assembling short diblock copolymer containing thymine into the polymersome membranes caused an increase in steric crowding at the hydrophilic/hydrophobic interface, which was relieved by initial node formation and subsequent growth. Nano-objects were imaged by (cryo-)TEM, which permitted quantification of node coverage and length. The ability to control node growth on the surface of polymersomes provides a new platform to develop higher-order nanomaterials with tailorable properties.

3.
Langmuir ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316052

RESUMO

A poly(glycerol monomethacrylate) (PGMA) precursor was chain-extended with 2,2,2-trifluoroethyl methacrylate (TFEMA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization. Transmission electron microscopy (TEM) studies confirmed the formation of well-defined PGMA52-PTFEMA50 spherical nanoparticles, while dynamic light scattering (DLS) studies indicated a z-average diameter of 26 ± 6 nm. These sterically stabilized diblock copolymer nanoparticles were used as emulsifiers to prepare oil-in-water Pickering nanoemulsions: either n-dodecane or squalane was added to an aqueous dispersion of nanoparticles, followed by high-shear homogenization and high-pressure microfluidization. The Pickering nature of such nanoemulsion droplets was confirmed via cryo-transmission electron microscopy (cryo-TEM). The long-term stability of such Pickering nanoemulsions was evaluated by analytical centrifugation over a four-week period. The n-dodecane droplets grew in size significantly faster than squalane droplets: this is attributed to the higher aqueous solubility of the former oil, which promotes Ostwald ripening. The effect of adding various amounts of squalane to the n-dodecane droplet phase prior to emulsification was also explored. The addition of up to 40% (v/v) squalane led to more stable nanoemulsions, as judged by analytical centrifugation. The nanoparticle adsorption efficiency at the n-dodecane-water interface was assessed by gel permeation chromatography when using nanoparticle concentrations of 4.0, 7.0, or 10% w/w. Increasing the nanoparticle concentration not only produced smaller droplets but also reduced the adsorption efficiency, as confirmed by TEM studies. Furthermore, the effect of varying the nanoparticle concentration (2.5, 5.0, or 10% w/w) on the long-term stability of n-dodecane-in-water Pickering nanoemulsions was explored over a four-week period. Nanoemulsions prepared at higher nanoparticle concentrations were more unstable and exhibited a faster rate of Ostwald ripening. The nanoparticle adsorption efficiency was monitored for an aging nanoemulsion prepared at a copolymer concentration of 2.5% w/w. As the droplets ripened over time, the adsorption efficiency remained constant (∼97%). This suggests that nanoparticles desorbed from the shrinking smaller droplets and then readsorbed onto larger droplets over time. Finally, the effect of temperature on the stability of Pickering nanoemulsions was examined. Storing these Pickering nanoemulsions at elevated temperatures led to faster rates of Ostwald ripening, as expected.

4.
Langmuir ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320303

RESUMO

Sterically stabilized diblock copolymer nanoparticles with a well-defined spherical morphology and tunable diameter were prepared by RAFT aqueous emulsion polymerization of benzyl methacrylate at 70 °C. The steric stabilizer precursor used for these syntheses contained pendent cis-diol groups, which means that such nanoparticles can react with a suitable aldehyde-functional surface via acetal bond formation. This principle is examined herein by growing an aldehyde-functionalized polymer brush from a planar silicon wafer and studying the extent of nanoparticle adsorption onto this model substrate from aqueous solution at 25 °C using a quartz crystal microbalance (QCM). The adsorbed amount, Γ, depends on both the nanoparticle diameter and the solution pH, with minimal adsorption observed at pH 7 or 10 and substantial adsorption achieved at pH 4. Variable-temperature QCM studies provide strong evidence for chemical adsorption, while scanning electron microscopy images recorded for the nanoparticle-coated brush surface after drying indicate mean surface coverages of up to 62%. This fundamental study extends our understanding of the chemical adsorption of nanoparticles on soft substrates.

5.
Langmuir ; 40(1): 734-743, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128476

RESUMO

A deeper understanding of the key processes that determine the particle morphologies generated during aerosol droplet drying is highly desirable for spray-drying of powdered pharmaceuticals and foods, predicting the properties of atmospheric particles, and monitoring disease transmission. Particle morphologies are affected by the drying kinetics of the evaporating droplets, which are in turn influenced by the composition of the initial droplet as well as the drying conditions. Herein, we use polymerization-induced self-assembly (PISA) to prepare three types of sterically stabilized diblock copolymer nanoparticles comprising the same steric stabilizer block and differing core blocks with z-average diameters ranging from 32 to 238 nm. These well-defined nanoparticles enable a systematic investigation of the effect of the nanoparticle size and composition on the drying kinetics of aqueous aerosol droplets (20-28 µm radius) and the final morphology of the resulting microparticles. A comparative kinetics electrodynamic balance was used to obtain evaporation profiles for 10 examples of nanoparticles at a relative humidity (RH) of 0, 45, or 65%. Nanoparticles comprising the same core block with mean diameters of 32, 79, and 214 nm were used to produce microparticles, which were dried under different RH conditions in a falling droplet column. Scanning electron microscopy was used to examine how the drying kinetics influenced the final microparticle morphology. For dilute droplets, the chemical composition of the nanoparticles had no effect on the evaporation rate. However, employing smaller nanoparticles led to the formation of dried microparticles with a greater degree of buckling.

6.
J Am Chem Soc ; 145(51): 28049-28060, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38088129

RESUMO

Crystallization-driven self-assembly (CDSA) of block copolymers (BCPs) in selective solvents provides a promising route for direct access to two-dimensional (2D) platelet micelles with excellent uniformity, although significant limitations also exist for this robust approach, such as tedious, multistep procedures, and low yield of assembled materials. Herein, we report a facile strategy for massively preparing 2D, highly symmetric hexagonal platelets with precise control over their dimensions based on BCPs with crystalline side chains. Mechanistic studies unveiled that the formation of hexagonal platelets was subjected to a hierarchical self-assembly process, involving an initial stage of formation of kinetically trapped spheres upon cooling driven by solvophobic interactions, and a second stage of fusion of such spheres to the 2D nuclei to initiate the lateral growth of hexagonal platelets via sequential particle attachments driven by thermodynamically ordered reorganization of the BCP upon aging. Moreover, the size of the developed 2D hexagonal platelets could be finely regulated by altering the copolymer concentration over a broad concentration range, enabling scale-up to a total solids concentration of at least 6% w/w. Our work reveals a new mechanism to create uniform 2D core-shell nanoparticles dictated by crystallization and particle fusion, while it also provides an alternative facile strategy for the design of soft materials with precise control of their dimensions, as well as for the scalability of the derived nanostructures.

7.
ACS Nano ; 17(23): 24141-24153, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37979190

RESUMO

Seeded heteroepitaxial growth is a "living" crystallization-driven self-assembly (CDSA) method that has emerged as a promising route to create uniform segmented nanoparticles with diverse core chemistries by using chemically distinct core-forming polymers. Our previous results have demonstrated that crystallization kinetics is a key factor that determines the occurrence of heteroepitaxial growth, but an in-depth understanding of controlling heteroepitaxy from the perspective of crystallization thermodynamics is yet unknown. Herein, we select crystallizable aliphatic polycarbonates (PxCs) with a different number of methylene groups (xCH2, x = 4, 6, 7, 12) in their repeating units as model polymers to explore the effect of lattice match and core compatibility on the seeded growth behavior. Seeded growth of PxCs-containing homopolymer/block copolymer blend unimers from poly(ε-caprolactone) (PCL) core-forming seed platelet micelles exhibits distinct crystal growth behavior at subambient temperatures, which is governed by the lattice match and core compatibility. A case of seeded growth with better core compatibility and a smaller lattice mismatch follows epitaxial growth, where the newly created crystal domain has the same structural orientation as the original platelet substrate. In contrast, a case of seeded growth with better core compatibility but a larger lattice mismatch shows nonepitaxial growth with less-defined crystal orientations in the platelet plane. Additionally, a case of seeded growth with poor core compatibility and larger lattice mismatch results in polydisperse platelet micelles, whereby crystal formation is not nucleated from the crystalline substrate. These findings reveal important factors that govern the specific crystal growth during a seeded growth approach by using compositionally distinct cores, which would further guide researchers in designing 2D segmented materials via polymer crystallization approaches.

8.
Chem Mater ; 35(15): 6109-6122, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576584

RESUMO

Dynamic covalent chemistry has been exploited to prepare numerous examples of adaptable polymeric materials that exhibit unique properties. Herein, the chemical adsorption of aldehyde-functional diblock copolymer spherical nanoparticles onto amine-functionalized surface-grafted polymer brushes via dynamic Schiff base chemistry is demonstrated. Initially, a series of cis-diol-functional sterically-stabilized spheres of 30-250 nm diameter were prepared via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization. The pendent cis-diol groups within the steric stabilizer chains of these precursor nanoparticles were then oxidized using sodium periodate to produce the corresponding aldehyde-functional spheres. Similarly, hydrophilic cis-diol-functionalized methacrylic brushes grafted from a planar silicon surface using activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) were selectively oxidized to generate the corresponding aldehyde-functional brushes. Ellipsometry and X-ray photoelectron spectroscopy were used to confirm brush oxidation, while scanning electron microscopy studies demonstrated that the nanoparticles did not adsorb onto a cis-diol-functional precursor brush. Subsequently, the aldehyde-functional brushes were treated with excess small-molecule diamine, and the resulting imine linkages were converted into secondary amine bonds via reductive amination. The resulting primary amine-functionalized brushes formed multiple dynamic imine bonds with the aldehyde-functional diblock copolymer spheres, leading to a mean surface coverage of approximately 0.33 on the upper brush layer surface, regardless of the nanoparticle size. Friction force microscopy studies of the resulting nanoparticle-decorated brushes enabled calculation of friction coefficients, which were compared to that measured for the bare aldehyde-functional brush. Friction coefficients were reasonably consistent across all surfaces except when particle size was comparable to the size of the probe tip. In this case, differences were ascribed to an increase in contact area between the tip and the brush-nanoparticle layer. This new model system enhances our understanding of nanoparticle adsorption onto hydrophilic brush layers.

9.
Macromolecules ; 56(11): 4296-4306, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37333840

RESUMO

The reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 4-hydroxybutyl acrylate (HBA) is conducted using a water-soluble RAFT agent bearing a carboxylic acid group. This confers charge stabilization when such syntheses are conducted at pH 8, which leads to the formation of polydisperse anionic PHBA latex particles of approximately 200 nm diameter. The weakly hydrophobic nature of the PHBA chains confers stimulus-responsive behavior on such latexes, which are characterized by transmission electron microscopy, dynamic light scattering, aqueous electrophoresis, and 1H NMR spectroscopy. Addition of a suitable water-miscible hydrophilic monomer such as 2-(N-(acryloyloxy)ethyl pyrrolidone) (NAEP) leads to in situ molecular dissolution of the PHBA latex, with subsequent RAFT polymerization leading to the formation of sterically stabilized PHBA-PNAEP diblock copolymer nanoparticles of approximately 57 nm diameter. Such formulations constitute a new approach to reverse sequence polymerization-induced self-assembly, whereby the hydrophobic block is prepared first in aqueous media.

10.
ACS Appl Mater Interfaces ; 14(48): 54182-54193, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36401811

RESUMO

With the purpose of investigating new polymeric materials as potential flow modifiers for their future application in enhanced oil recovery (EOR), a series of amphiphilic poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate) [P(DEGMA-co-OEGMA)]-based core-shell nanoparticles were prepared by aqueous reversible addition-fragmentation chain transfer-mediated polymerization-induced self-assembly. The developed nano-objects were shown to be thermoresponsive, demonstrating a reversible lower-critical solution temperature (LCST)-type phase transition with increasing solution temperature. Characterization of their thermoresponsive nature by variable-temperature UV-vis and dynamic light scattering analyses revealed that these particles reversibly aggregate when heated above their LCST and that the critical transition temperature could be accurately tuned by simply altering the molar ratio of core-forming monomers. Sandpack experiments were conducted to evaluate their pore-blocking performance at low flow rates in a porous medium heated at temperatures above their LCST. This analysis revealed that particles aggregated in the sandpack column and caused pore blockage with a significant reduction in the porous medium permeability. The developed aggregates and the increased pressure generated by the blockage were found to remain stable under the injection of brine and were observed to rapidly dissipate upon reducing the temperature below the LCST of each formulation. Further investigation by double-column sandpack analysis showed that the blockage was able to reform when re-heated and tracked the thermal front. Moreover, the rate of blockage formation was observed to be slower when the LCST of the injected particles was higher. Our investigation is expected to pave the way for the design of "smart" and versatile polymer technologies for EOR applications in future studies.

11.
Polym Chem ; 13(27): 4047-4053, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35923350

RESUMO

We report the synthesis of redox- and pH-sensitive block copolymer micelles that contain chiral cores composed of helical poly(aryl isocyanide)s. Pentafluorophenyl (PFP) ester-containing micelles synthesised via nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers are modified post-polymerisation with various diamines to introduce cross-links and/or achieve stimulus-sensitive nanostructures. The successful introduction of the diamines is confirmed by Fourier-transform infrared spectroscopy (FT-IR), while the stabilisation effect of the cross-linking is explored by dynamic light scattering (DLS). The retention of the helicity of the core-forming polymer block is verified by circular dichroism (CD) spectroscopy and the stimuli-responsiveness of the nanoparticles towards a reducing agent (l-glutathione, GSH) and pH is evaluated by following the change in the size of the nanoparticles by DLS. These stimuli-responsive nanoparticles could find use in applications such as drug delivery, nanosensors or biological imaging.

12.
Chem Sci ; 13(24): 7295-7303, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799807

RESUMO

Polymerization-induced self-assembly (PISA) has been widely utilized as a powerful methodology for the preparation of various self-assembled AB diblock copolymer nano-objects in aqueous media. Moreover, it is well-documented that chain extension of AB diblock copolymer vesicles using a range of hydrophobic monomers via seeded RAFT aqueous emulsion polymerization produces framboidal ABC triblock copolymer vesicles with adjustable surface roughness owing to microphase separation between the two enthalpically incompatible hydrophobic blocks located within their membranes. However, the utilization of hydrophilic monomers for the chain extension of linear diblock copolymer vesicles has yet to be thoroughly explored; this omission is addressed for aqueous PISA formulations in the present study. Herein poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (G-H) vesicles were used as seeds for the RAFT aqueous dispersion polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA). Interestingly, this led to polymerization-induced disassembly (PIDA), with the initial precursor vesicles being converted into lower-order worms or spheres depending on the target mean degree of polymerization (DP) for the corona-forming POEGMA block. Moreover, construction of a pseudo-phase diagram revealed an unexpected copolymer concentration dependence for this PIDA formulation. Previously, we reported that PHPMA-based diblock copolymer nano-objects only exhibit thermoresponsive behavior over a relatively narrow range of compositions and DPs (see Warren et al., Macromolecules, 2018, 51, 8357-8371). However, introduction of the POEGMA coronal block produced thermoresponsive ABC triblock nano-objects even when the precursor G-H diblock copolymer vesicles proved to be thermally unresponsive. Thus, this new approach is expected to enable the rational design of new nano-objects with tunable composition, copolymer architectures and stimulus-responsive behavior.

13.
ACS Polym Au ; 1(1): 47-58, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34476421

RESUMO

The ability to tune the behavior of temperature-responsive polymers and self-assembled nanostructures has attracted significant interest in recent years, particularly in regard to their use in biotechnological applications. Herein, well-defined poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA)-based core-shell particles were prepared by RAFT-mediated emulsion polymerization, which displayed a lower-critical solution temperature (LCST) phase transition in aqueous media. The tertiary amine groups of PDEAEMA units were then utilized as functional handles to modify the core-forming block chemistry via a postpolymerization betainization approach for tuning both the cloud-point temperature (T CP) and flocculation temperature (T CFT) of these particles. In particular, four different sulfonate salts were explored aiming to investigate the effect of the carbon chain length and the presence of hydroxyl functionalities alongside the carbon spacer on the particle's thermoresponsiveness. In all cases, it was possible to regulate both T CP and T CFT of these nanoparticles upon varying the degree of betainization. Although T CP was found to be dependent on the type of betainization reagent utilized, it only significantly increased for particles betainized using sodium 3-chloro-2-hydroxy-1-propanesulfonate, while varying the aliphatic chain length of the sulfobetaine only provided limited temperature variation. In comparison, the onset of flocculation for betainized particles varied over a much broader temperature range when varying the degree of betainization with no real correlation identified between T CFT and the sulfobetaine structure. Moreover, experimental results were shown to partially correlate to computational oligomer hydrophobicity calculations. Overall, the innovative postpolymerization betainization approach utilizing various sulfonate salts reported herein provides a straightforward methodology for modifying the thermoresponsive behavior of soft polymeric particles with potential applications in drug delivery, sensing, and oil/lubricant viscosity modification.

14.
Polymers (Basel) ; 13(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34451144

RESUMO

Proteins and peptides, built from precisely defined amino acid sequences, are an important class of biomolecules that play a vital role in most biological functions. Preparation of nanostructures through functionalization of natural, hydrophilic proteins/peptides with synthetic polymers or upon self-assembly of all-synthetic amphiphilic copolypept(o)ides and amino acid-containing polymers enables access to novel protein-mimicking biomaterials with superior physicochemical properties and immense biorelevant scope. In recent years, polymerization-induced self-assembly (PISA) has been established as an efficient and versatile alternative method to existing self-assembly procedures for the reproducible development of block copolymer nano-objects in situ at high concentrations and, thus, provides an ideal platform for engineering protein-inspired nanomaterials. In this review article, the different strategies employed for direct construction of protein-, (poly)peptide-, and amino acid-based nanostructures via PISA are described with particular focus on the characteristics of the developed block copolymer assemblies, as well as their utilization in various pharmaceutical and biomedical applications.

15.
J Am Chem Soc ; 142(32): 13878-13885, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32673484

RESUMO

Aqueous ring-opening metathesis polymerization (ROMP) is a powerful tool for polymer synthesis under environmentally friendly conditions, functionalization of biomacromolecules, and preparation of polymeric nanoparticles via ROMP-induced self-assembly (ROMPISA). Although new water-soluble Ru-based metathesis catalysts have been developed and evaluated for their efficiency in mediating cross metathesis (CM) and ring-closing metathesis (RCM) reactions, little is known with regards to their catalytic activity and stability during aqueous ROMP. Here, we investigate the influence of solution pH, the presence of salt additives, and catalyst loading on ROMP monomer conversion and catalyst lifetime. We find that ROMP in aqueous media is particularly sensitive to chloride ion concentration and propose that this sensitivity originates from chloride ligand displacement by hydroxide or H2O at the Ru center, which reversibly generates an unstable and metathesis inactive complex. The formation of this Ru-(OH)n complex not only reduces monomer conversion and catalyst lifetime but also influences polymer microstructure. However, we find that the addition of chloride salts dramatically improves ROMP conversion and control. By carrying out aqueous ROMP in the presence of various chloride sources such as NaCl, KCl, or tetrabutylammonium chloride, we show that diblock copolymers can be readily synthesized via ROMPISA in solutions with high concentrations of neutral H2O (i.e., 90 v/v%) and relatively low concentrations of catalyst (i.e., 1 mol %). The capability to conduct aqueous ROMP at neutral pH is anticipated to enable new research avenues, particularly for applications in biological media, where the unique characteristics of ROMP provide distinct advantages over other polymerization strategies.

17.
Macromol Rapid Commun ; 41(6): e1900599, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32017291

RESUMO

Understanding, predicting, and controlling the self-assembly behavior of stimuli-responsive block copolymers remains a pertinent challenge. As such, the copolymer blending protocol provides an accessible methodology for obtaining a range of intermediate polymeric nanostructures simply by blending two or more block copolymers in the desired molar ratio to target specific stimuli-responsiveness. Herein, thermoresponsive diblock copolymers are blended in various combinations to investigate whether the resultant cloud point temperature can be modulated by simple manipulation of the molar ratio. Thermoresponsive amphiphilic diblock copolymers composed of statistical poly(n-butyl acrylate-co-N,N-dimethylacrylamide) core-forming blocks and four different thermoresponsive corona-forming blocks, namely poly(diethylene glycol monomethyl ether methacrylate) (p(DEGMA)), poly(N-isopropylacrylamide), poly(N,N-diethylacrylamide), and poly(oligo(ethylene glycol) monomethyl ether methacrylate) (p(OEGMA)) are selected for evaluation. Using variable temperature turbidimetry, the thermoresponsive behavior of blended diblock copolymer self-assemblies is assessed and compared to the thermoresponsive behavior of the constituent pure diblock copolymer micelles to determine whether comicellization is achieved and more significantly, whether the two blended corona-forming thermoresponsive blocks exhibit cooperative behavior. Interestingly, blended diblock copolymer micelles composed of p(DEGMA)/p(OEGMA) mixed coronae display cooperative behavior, highlighting the potential of copolymer blending for the preparation of stimuli-responsive nanomaterials in applications such as oil recovery, drug delivery, biosensing, and catalysis.


Assuntos
Micelas , Polímeros/química , Polímeros/síntese química , Acrilamidas/química , Acrilatos/química , Resinas Acrílicas/química , Metacrilatos/química , Polietilenoglicóis/química , Polimerização , Propriedades de Superfície , Temperatura
18.
ACS Macro Lett ; 9(2): 226-232, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35638685

RESUMO

The interest in helix-containing nanostructures is currently growing as a consequence of their potential applications in areas such as nanomedicine, nanomaterial design, chiral recognition, and asymmetric catalysis. Herein, we present a facile and tunable one-pot methodology to achieve chiral nano-objects. The nickel-catalyzed coordination polymerization-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers was realized and allowed access to various nano-object morphologies (spheres, worm-like micelles, and polymersomes). The helicity of the core block was confirmed via circular dichroism (CD) spectroscopy for all morphologies, proving their chiral nature. Small-molecule uptake by the spherical nanoparticles was investigated by encapsulating Nile Red into the core of the spheres and subsequent transfer into aqueous media. The presence of a CD signal for the otherwise CD-inactive dye proved the chiral induction effect of the nano-objects' helical core. This demonstrates the potential of NiCCo-PISA to prepare nanoparticles for applications in nanomaterials, catalysis, and recognition.

19.
Biomacromolecules ; 20(12): 4546-4562, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31697482

RESUMO

Macromolecular architecture plays an important role in the self-assembly process of block copolymer amphiphiles. Herein, two series of stimuli-responsive amphiphilic 3-miktoarm star hybrid terpolypeptides and their corresponding linear analogues were synthesized exhibiting the same overall composition and molecular weight but different macromolecular architecture. The macromolecular architecture was found to be a key parameter in defining the morphology of the nanostructures formed in aqueous solutions as well as to alter the self-assembly behavior of the polymers independently of their composition. In addition, it was found that the assemblies prepared from the star-shaped polymers showed superior tolerance against enzymatic degradation due to the increased corona block density on the outer surface of the nanoparticles. Encapsulation of the hydrophobic anticancer drug Everolimus resulted in the formation of intriguing non-spherical and non-symmetric pH-responsive nanostructures, such as "stomatocytes" and "multi-compartmentalized suprapolymersomes", while the pH-triggered release of the drug was also investigated. Owing to the similarities of the developed "stomatocytes" with red blood cells, in combination with their pH-responsiveness and superior stability over enzymatic degradation, they are expected to present advanced drug delivery properties and have the ability to bypass several extra- and intracellular barriers to reach and effectively treat cancer cells.


Assuntos
Antineoplásicos , Everolimo , Hidrogéis , Nanopartículas/química , Peptídeos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Everolimo/química , Everolimo/farmacocinética , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacocinética , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacocinética
20.
J Am Chem Soc ; 141(51): 20234-20248, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31782652

RESUMO

The dynamic interactions of membranes, particularly their fusion and fission, are critical for the transmission of chemical information between cells. Fusion is primarily driven by membrane tension built up through membrane deformation. For artificial polymersomes, fusion is commonly induced via the external application of a force field. Herein, fusion-promoted development of anisotropic tubular polymersomes (tubesomes) was achieved in the absence of an external force by exploiting the unique features of aqueous ring-opening metathesis polymerization-induced self-assembly (ROMPISA). The out-of-equilibrium tubesome morphology was found to arise spontaneously during polymerization, and the composition of each tubesome sample (purity and length distribution) could be manipulated simply by targeting different core-block degrees of polymerization (DPs). The evolution of tubesomes was shown to occur via fusion of "monomeric" spherical polymersomes, evidenced most notably by a step-growth-like relationship between the fraction of tubular to spherical nano-objects and the average number of fused particles per tubesome (analogous to monomer conversion and DP, respectively). Fusion was also confirmed by Förster resonance energy transfer (FRET) studies to show membrane blending and confocal microscopy imaging to show mixing of the polymersome lumens. We term this unique phenomenon polymerization-induced polymersome fusion, which operates via the buildup of membrane tension exerted by the growing polymer chains. Given the growing body of evidence demonstrating the importance of nanoparticle shape on biological activity, our methodology provides a facile route to reproducibly obtain samples containing mixtures of spherical and tubular polymersomes, or pure samples of tubesomes, of programmed length. Moreover, the capability to mix the interior aqueous compartments of polymersomes during polymerization-induced fusion also presents opportunities for its application in catalysis, small molecule trafficking, and drug delivery.


Assuntos
Complexos de Coordenação/síntese química , Polímeros/síntese química , Anisotropia , Complexos de Coordenação/química , Transferência Ressonante de Energia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Polimerização , Polímeros/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA