Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(40): 34773-34782, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28926228

RESUMO

Lithium ion batteries (LIBs) with polymer based electrolytes have attracted enormous attention due to the possibility of fabricating intrinsically safer and flexible devices. However, economical and eco-friendly sustainable technology is an oncoming challenge to fulfill the ever increasing demand. To circumvent this issue, we have developed a gel polymer electrolyte (GPE) based on renewable polymers like cellulose triacetate and poly(polyethylene glycol methacrylate) p(PEGMA) using a photo polymerization technique. Cellulose triacetate offers good mechanical strength with improved ionic conductivity, owing to its ether and carbonyl functional groups. It is observed that the presence of an open network has a critical impact on lithium ion transport. At room temperature, GPE PC exhibits an optimal ionic conductivity of 1.8 × 10-3 S cm-1 and transference number of 0.7. Interestingly, it affords an excellent electrochemical stability window up to 5.0 V vs Li/Li+. GPE PC shows a discharge capacity of 164 mAhg-1 after the first cycle when evaluated in a Li/GPE/LiFePO4 cell at 0.5 C-rate. Interfacial compatibility of GPE PC with lithium metal improves the overall cycling performance. This system provides a guiding principle toward a future renewable and flexible electrolyte design for flexible LIBs (FLIBs).

2.
Artigo em Inglês | MEDLINE | ID: mdl-28607028

RESUMO

Despite recent advances in diagnostic and therapeutic methods in antifungal research, aspergillosis still remains a leading cause of morbidity and mortality. One strategy to address this problem is to enhance the activity spectrum of known antifungals, and we now report the first successful application of Candida antarctica lipase (CAL) for the preparation of optically enriched fluconazole analogues. Anti-Aspergillus activity was observed for an optically enriched derivative, (-)-S-2-(2',4'-difluorophenyl)-1-hexyl-amino-3-(1‴,2‴,4‴)triazol-1‴-yl-propan-2-ol, which exhibits MIC values of 15.6 µg/ml and 7.8 µg/disc in broth microdilution and disc diffusion assays, respectively. This compound is tolerated by mammalian erythrocytes and cell lines (A549 and U87) at concentrations of up to 1,000 µg/ml. When incorporated into dextran nanoparticles, the novel, optically enriched fluconazole analogue exhibited improved antifungal activity against Aspergillus fumigatus (MIC, 1.63 µg/ml). These results not only demonstrate the ability of biocatalytic approaches to yield novel, optically enriched fluconazole derivatives but also suggest that enantiomerically pure fluconazole derivatives, and their nanotized counterparts, exhibiting anti-Aspergillus activity may have reduced toxicity.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Fluconazol/análogos & derivados , Fluconazol/farmacologia , Células A549 , Linhagem Celular , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Fluconazol/efeitos adversos , Proteínas Fúngicas/metabolismo , Humanos , Lipase/metabolismo , Nanopartículas/química
3.
Int J Biol Macromol ; 103: 1032-1043, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28554795

RESUMO

Lithium ion batteries (LIB) are the most promising energy storage systems for portable electronics and future electric or hybrid-electric vehicles. However making them safer, cost effective and environment friendly is the key challenge. In this regard, replacing petro-derived materials by introducing renewable biomass derived cellulose derivatives and lignin based materials into the battery system is a promising approach for the development of green materials for LIB. These biomaterials introduce sustainability as well as improved safety in the final disposal of LIB batteries. In this review we introduce LIB materials technology in brief and recent developments in electrodes and binders based on cellulose and their derivatives and lignin for lithium ion batteries.


Assuntos
Celulose/química , Fontes de Energia Elétrica , Lignina/química , Lítio/química , Eletrodos , Silício/química
4.
Molecules ; 21(11)2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834873

RESUMO

Highly regioselective acylation has been observed in 7,8-dihydroxy-4-methylcoumarin (DHMC) by the lipase from Rhizopus oryzae suspended in tetrahydrofuran (THF) at 45 °C using six different acid anhydrides as acylating agents. The acylation occurred regioselectively at one of the two hydroxy groups of the coumarin moiety resulting in the formation of 8-acyloxy-7-hydroxy-4-methylcoumarins, which are important bioactive molecules for studying biotansformations in animals, and are otherwise very difficult to obtain by only chemical steps. Six monoacylated, monohydroxy 4-methylcoumarins have been biocatalytically synthesised and identified on the basis of their spectral data and X-ray crystal analysis.


Assuntos
Cumarínicos/química , Cumarínicos/síntese química , Proteínas Fúngicas/química , Lipase/química , Rhizopus/enzimologia , Cristalografia por Raios X , Ésteres/síntese química , Ésteres/química , Estrutura Molecular
5.
Int J Biol Macromol ; 87: 460-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26968926

RESUMO

Oxidized celluloses have been used for decades as antimicrobial wound gauzes and surgical cotton. We now report the successful synthesis of a next generation narrow size range (25-35nm) spherical shaped nanoparticles of 2,3,6-tricarboxycellulose based on cellulose I structural features, for applications as new antimicrobial materials. This study adds to our previous study of 6-carboxycellulose. A wide range of bacteria such as Escherichia coli, Staphloccocus aureus, Bacillus subtilis and Mycobacterium tuberculosis (non-pathogenic as well as pathogenic strains) were affected by these polymers in in vitro studies. Activity against Mycobacteria were noted at high concentrations (MIC99 values 250-1000µg/ml, as compared to anti-TB drug Isoniazid 0.3µg/ml). However, the broad spectrum activity of oxidized celluloses and their nanoparticles against a wide range of bacteria, including Mycobacteria, show that these materials are promising new biocompatible and biodegradable drug delivery vehicles wherein they can play the dual role of being a drug encapsulant as well as a broad spectrum anti-microbial and anti-TB drug.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Celulose Oxidada/química , Celulose Oxidada/farmacologia , Nanoestruturas/química , Nanotecnologia , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana
6.
3 Biotech ; 6(2): 126, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330198

RESUMO

Pretreatment and enzymatic hydrolysis play a critical role in the economic production of sugars and fuels from lignocellulosic biomass. In this study, we evaluated diverse pilot-scale pretreatments and different post-pretreatment strategies for the production of fermentable sugars from sugarcane bagasse. For the pretreatment of bagasse at pilot-scale level, steam explosion without catalyst and combination of sulfuric and oxalic acids at low and high loadings were used. Subsequently, to enhance the efficiency of enzymatic hydrolysis of the pretreated bagasse, three different post-pretreatment process schemes were investigated. In the first scheme (Scheme 1), enzymatic hydrolysis was conducted on the whole pretreated slurry, without treatments such as washing or solid-liquid separation. In the second scheme (Scheme 2), the pretreated slurry was first pressure filtered to yield a solid and liquid phase. Following filtration, the separated liquid phase was remixed with the solid wet cake to generate slurry, which was then subsequently used for enzymatic hydrolysis. In the third scheme (Scheme 3), the pretreated slurry was washed with more water and filtered to obtain a solid and liquid phase, in which only the former was subjected to enzymatic hydrolysis. A 10 % higher enzymatic conversion was obtained in Scheme 2 than Scheme 1, while Scheme 3 resulted in only a 5-7 % increase due to additional washing unit operation and solid-liquid separation. Dynamic light scattering experiments conducted on post-pretreated bagasse indicate decrease of particle size due to solid-liquid separation involving pressure filtration provided increased the yield of C6 sugars. It is anticipated that different process modification methods used in this study before the enzymatic hydrolysis step can make the overall cellulosic ethanol process effective and possibly cost effective.

7.
Carbohydr Polym ; 114: 339-343, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25263899

RESUMO

Oxidized cellulose containing carboxyl and aldehyde functional groups represent an important class of cellulose derivatives. In this study effect of incrementally increasing COOH and CHO groups at C2, C3, and C6 positions of cellulose and nanocellulose has been investigated, with a view to understanding their effect on thermal treatment of cellulose. The results show that 2,3-dialdehyde cellulose (DAC) is the most thermally stable oxidized product of cellulose while the most unstable derivatives contain carboxyl group at the C6 position (6CC). Carboxymethylcellulose (CMC), with carboxymethyl group on C6 position, is more stable than 6CC. Multi-functionalized celluloses 2,3,6-tricarboxycellulose and 6-carboxy-2,3-dialdehyde, have the same level of thermal stability as 6CC, showing that the presence of carboxyl at the C6 is a key destabilizing factor in the thermal stability of oxidized cellulose products. More the number of reducing end groups on the polymer chain, lower the thermal stability of the cellulose, as proved by comparing the TGA/DTG of monomeric analogs dextrose, cellobiose and glucuronic acid with the oxidized celluloses. The thermal stability trend observed for oxidized celluloses was DAC>DCC>nanoparticles>dextrose>glucuronic acid, caused by extent of reducing ends and COOH groups.


Assuntos
Celulose/análogos & derivados , Celulose/química , Nanopartículas/química , Estabilidade de Medicamentos
8.
Carbohydr Polym ; 113: 615-23, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25256525

RESUMO

Cellulose-I swells considerably in phosphoric acid, and converts to amorphous cellulose via a cellulose-II transition state. Controlled oxidation of cellulose-I to 6-carboxycellulose (6 CC) using HNO3-H3PO4-NaNO2 oxidation system led to the selective production of 6 CC's of varying carboxyl contents (1.7-22%) as well as various shapes and sizes (macro-sized fibrils of several micron length and/or spherical nanoparticles of 25-35 nm), depending on the reaction conditions. 6 CC's having less than 14% carboxyl content were largely in cellulose-II form (WAXRD values in-between cellulose I and cellulose II), whereas at 14-22% the 6 CC's were largely amorphous; only trace crystallinity was observed at 19% and 22% carboxyl 6 CC. Spherical nanoparticles retained a high degree of crystallinity having cellulose-I structure, whereas the macro-sized fibrils were largely converted to cellulose-II structure. Analysis by WAXRD as well as by CP-MAS (13)C NMR studies gave similar conclusions. Reduced molecular weight with progressive oxidation, including presence of oligomers, was also evident from an increase in the reducing-end carbon peak at ∼ 92 ppm. For high oxidation levels (>14%) the NMR 92-96 ppm peaks disappeared on extracting with dilute alkali, due to soluble oligomers being removed.

9.
Chem Commun (Camb) ; 49(78): 8818-20, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23959448

RESUMO

Agricultural residue derived cellulose and cotton cellulose were used to synthesize quasi-spherical nanoparticles of 6-carboxycellulose having diameter 25-35 nm. This provides a new range of functionalized nanostructured celluloses with increased versatility and applications. The nanoparticles were efficient in stabilizing carbon nanotube dispersions and were effective anti-microbial agents against E. coli.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Celulose Oxidada/química , Celulose Oxidada/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas/química , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Nanopartículas/ultraestrutura , Nanotubos de Carbono/química , Tamanho da Partícula
10.
Chem Commun (Camb) ; (23): 2884-5, 2002 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-12478795

RESUMO

A hypothesis was developed, and successfully tested, to greatly increase the rates of biodegradation of polyolefins, by anchoring minute quantities of glucose, sucrose or lactose, onto functionalized polystyrene (polystyrene-co-maleic anhydride copolymer) and measuring their rates of biodegradation, which were found to be significantly improved.


Assuntos
Poluição Ambiental/prevenção & controle , Polienos/metabolismo , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Dissacarídeos/química , Dissacarídeos/farmacologia , Cinética , Monossacarídeos/química , Monossacarídeos/farmacologia , Poliestirenos/química , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/metabolismo
11.
J Org Chem ; 67(20): 6884-8, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12353978

RESUMO

myo-Inositol-derived crown ethers having varying relative orientations (1,3-diaxial, 1,2-diequatorial, and 1,2-axial-equatorial) of the oxygen atoms in the ionophoric ring were synthesized and the extent of their binding with picrates of alkali metals, ammonia, and silver were estimated. These crown ethers bind very well with potassium and silver picrates and show good to moderate binding toward lithium, sodium, cesium, and ammonium picrates. These myo-inositol-derived crown ethers exhibit very strong binding for silver, even though they do not have sulfur or nitrogen coordinating sites in them, which are known to have high affinity for silver. The ratio of binding constants for silver to other ions tested varies from 10(2) to 10(5). The ion selectivity and the strength of binding are dependent on the relative orientation of the oxygen atoms in the ionophoric ring as well as on the size of the macrocyclic ring.


Assuntos
Amônia/química , Éteres Cíclicos/química , Éteres Cíclicos/síntese química , Inositol/química , Compostos Organometálicos/síntese química , Picratos/química , Prata/química , Eletrodos Seletivos de Íons , Estrutura Molecular , Oxigênio/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA