Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(23): 16625-16636, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38808366

RESUMO

In recent times, considerable attention has been given to examining the impact of micro/nanostructure on the thermoelectric characteristics of nonstoichiometric AgSbTe2. The present investigation employed direct melting of elements that produced p-type AgSbTe2 with spontaneous nanostructuring due to cation ordering. The product predominantly features an Ag-deficient Ag0.927Sb1.07Te2.005 phase with monoclinic Ag2Te nanoprecipitates and exhibits a degenerate semiconductor-like behavior with an energy band gap of 0.15 eV. A Seebeck coefficient of 251 µV K-1 and a power factor of 741 µW m-1 K-2 at near ambient temperature are attained with this composition. The variable range hopping (VRH) and linear magnetoresistance (LMR) confirmed that the low-temperature transport followed a VRH between the localized states. The composition also exhibited glass like thermal conductivity of 0.2 W m-1 K-1 arising from phonon scattering at all-scale hierarchical structures that led to a high ZT of 1.1 at room temperature. The direct melted ingots show a high relative density of ∼97%, Vickers hardness Hv of ∼108.5 kgf mm-2, and excellent thermal stability, making them an attractive choice for TEGs.

2.
Biosens Bioelectron ; 258: 116358, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718634

RESUMO

Wearable sensors for sweat glucose monitoring are gaining massive interest as a patient-friendly and non-invasive way to manage diabetes. The present work offers an alternative on-body method employing an all-printed flexible electrochemical sensor to quantify the amount of glucose in human sweat. The working electrode of the glucose sensor was printed using a custom-formulated ink containing multi-walled carbon nanotube (MWCNT), poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOPT: PSS), and iron (II, III) oxide (Fe3O4) nanoparticles. This novel ink composition has good conductivity, enhanced catalytic activity, and excellent selectivity. The working electrode was modified using Prussian blue (PB) nanoparticles and glucose oxidase enzyme (GOx). The sensor displayed a linear chronoamperometric response to glucose from 1 µM to 400 µM, with a precise detection limit of ∼0.38 µM and an impressive sensitivity of ∼4.495 µAµM-1cm-2. The sensor stored at 4 °C exhibited excellent stability over 60 days, high selectivity, and greater reproducibility. The glucose detection via the standard addition method in human sweat samples acquired a high recovery rate of 96.0-98.6%. Examining human sweat during physical activity also attested to the biosensor's real-time viability. The results also show an impressive correlation between glucose levels obtained from a commercial blood glucose meter and sweat glucose concentrations. Remarkably, the present results outperform previously published printed glucose sensors in terms of detection range, low cost, ease of manufacturing, stability, selectivity, and wearability.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Glucose , Limite de Detecção , Nanocompostos , Nanotubos de Carbono , Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/instrumentação , Nanotubos de Carbono/química , Suor/química , Nanocompostos/química , Glucose/análise , Glucose Oxidase/química , Tinta , Técnicas Eletroquímicas , Compostos Férricos/química , Ferrocianetos/química , Polímeros/química , Reprodutibilidade dos Testes , Compostos Bicíclicos Heterocíclicos com Pontes/química , Poliestirenos
3.
Phys Chem Chem Phys ; 26(18): 13773-13789, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38655720

RESUMO

In the present investigation, we present the comparison of the structural, magnetic, magnetocaloric and magnetoresistance behavior of solid state and sol-gel derived La0.7Sr0.3MnO3. X-ray diffraction together with Rietveld refinement confirms the rhombohedral structure of the synthesised samples with the R3̄c space group. The ferromagnetic-to-paramagnetic transition temperature decreases from 360 K to 346 K for the nanocrystalline sample. The XPS measurements confirm the presence of Mn3+ in the synthesised samples. Furthermore, the polycrystalline sample exhibits a considerable -ΔSM of 4.68 J kg-1 K-1 at 360 K for a field change of 50 kOe and a relative cooling power (RCP) of 205 J kg-1. A -ΔSM of 1.14 J kg-1 K-1 was obtained for the nanocrystalline sample at 346 K with an RCP of 83 J kg-1. Critical exponent analysis has also been performed on both samples to establish the universality class. Both samples exhibit a distinct metal-to-insulator transition, which increases with grain size from 187 K to 334 K as a result of grain growth and decreased grain boundary. As the grain size increases, the resistivity decreases and shifts towards high temperatures with increasing magnetic fields. The itinerant electron model (IEO) which is based on the hopping of O 2p itinerant electrons has been used to explain the resistivity behaviour of the samples. It is found that the negative magnetoresistance also increases with a decrease in grain size where the highest %MR of 26% can be observed for the nanocrystalline sample. These results make La0.7Sr0.3MnO3 a suitable candidate for multifunctional applications.

4.
Dalton Trans ; 46(48): 17053-17060, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29185572

RESUMO

A few thallium based layered chalcogenides of α-NaFeO2 structure-type are known for their excellent thermoelectric properties and interesting topological insulator nature. TlScQ2 belongs to this structural category. In the present work, we have studied the electronic structure, electrical and thermal transport properties and thermal stability of the title compounds within the temperature range 2-600 K. Density functional theory (DFT) predicts a metallic nature for TlScTe2 and a semiconducting nature for TlScSe2. DFT calculations also show significant lowering of energies of frontier bands upon inclusion of spin-orbit coupling contribution in the calculation. The electronic structure also shows the simultaneous occurrence of holes and electron pockets for the telluride. Experiments reveal that the telluride shows a semi-metallic behaviour whereas the selenide is a semiconductor. The thermoelectric properties for both the materials were also investigated. Both these materials possess very low thermal conductivity which is an attractive feature for thermoelectrics. However, they lack thermal stability and decompose upon warming above room temperature, as evidenced from high temperature powder X-ray diffraction and thermal analysis.

5.
Phys Chem Chem Phys ; 19(19): 12282-12295, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28451661

RESUMO

We report on the observation of double transition - a first order and a second order transition in Gd5Si2-xCoxGe2 with x = 0, 0.1, 0.2 and 0.4 with the appearance of short-range ferromagnetic correlations. The first order phase transition is due to a combined magnetostructural transition from monoclinic paramagnetic phase to orthorhombic ferromagnetic phase on cooling while the second order transition arises from an orthorhombic paramagnetic to ferromagnetic phase on cooling. Structural studies show that the substituted compounds crystallize in a combination of Gd5Si2Ge2 and Gd5Si4 phases. Low-temperature X-ray diffraction measurements confirm the complete transformation from monoclinic to orthorhombic phase. DC magnetization measurements reveal an anomalous low field magnetic behaviour indicating a Griffiths-like phase. This unusual behaviour is attributed to the local disorder within the crystallographic structure indicating the presence of short-range magnetic correlations and ferromagnetic clustering, which is stabilized and enhanced by competing intra-layer and inter-layer magnetic interactions. The magnetostructural transition results in entropy changes (-ΔSM) of 9 J kg-1 K-1 at 260 K for x = 0.1, 8.5 J kg-1 K-1 at 245 K for x = 0.2 and 4.2 J kg-1 K-1 at 210 K for x = 0.4 for a field change of 50 kOe. Co substitution induces compelling crystallographic and magnetoresponsive effects in the Gd-Si-Ge system, which could be useful for potential and smart applications such as solid-state magnetic refrigeration and sensitive magnetic switching from paramagnetic to ferromagnetic state. Universal curve analysis has been carried out on the substituted samples to study the order of the magnetic transition.

6.
Phys Chem Chem Phys ; 15(21): 8106-11, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23580129

RESUMO

The poor solubility, poor biocompatibility and disposal issues make fluorescent quantum dots such as CdSe, CdS, ZnS, InP, InAs, etc. impractical for imaging tissues or intercellular structures. As calcium phosphate is the main inorganic component of human bone and teeth, hydroxyapatite (Ca10(PO4)6(OH)2, HAp) is highly biocompatible and bioactive. Since HAp nanoparticles are not luminescent, a novel inorganic biocompatible fluorescent probe was suggested by doping HAp with lanthanides. Here we report the growth of chemically pure fluorescent HAp nanoparticles synthesized by a new methodology, liquid phase pulsed laser ablation using third harmonics (355 nm) of Nd-YAG laser. Europium doped HAp nanoparticles show emission with prominent peaks at 531 nm, 572 nm, 601 nm and 627 nm upon excitation at a wavelength of 325 nm. The red luminescence could also be observed under visible excitation at 459 nm and is suitable for living cell applications.


Assuntos
Durapatita/química , Európio/química , Corantes Fluorescentes/química , Nanopartículas/química , Durapatita/síntese química , Corantes Fluorescentes/síntese química , Lasers de Estado Sólido , Luminescência , Medições Luminescentes , Nanopartículas/ultraestrutura
7.
Nanotechnology ; 19(7): 075710, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-21817658

RESUMO

Silver silica nanocomposites were obtained by the sol-gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO(3)) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO(3) concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5-10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA