Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Chem Inf Model ; 64(8): 3477-3487, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38605537

RESUMO

Allostery is an essential biological phenomenon in which perturbation at one site in a biomolecule elicits a functional response at a distal location(s). It is integral to biological processes, such as cellular signaling, metabolism, and transcription regulation. Understanding allostery is also crucial for rational drug discovery. In this work, we focus on an allosteric S100B protein that belongs to the S100 class of EF-hand Ca2+-binding proteins. The Ca2+-binding affinity of S100B is modulated allosterically by TRTK-12 peptide binding 25 Å away from the Ca2+-binding site. We investigated S100B allostery by carrying out nuclear magnetic resonance (NMR) measurements along with microsecond-long molecular dynamics (MD) simulations on S100B/Ca2+ with/without TRTK-12 at different NaCl salt concentrations. NMR HSQC results show that TRTK-12 reorganizes how S100B/Ca2+ responds to different salt concentrations at both orthosteric and allosteric sites. The MD data suggest that TRTK-12 breaks the dynamic aromatic and hydrogen-bond interactions (not observed in X-ray crystallographic structures) between the hinge/helix and Ca2+-binding EF-hand loop of the two subunits in the homodimeric protein. This triggers rearrangement in the protein network architectures and leads to allosteric communication. Finally, computational studies of S100B at distinct ionic strengths suggest that ligand-bound species are more robust to the changing environment relative to the S100B/Ca2+ complex.


Assuntos
Proteína de Capeamento de Actina CapZ , Simulação de Dinâmica Molecular , Subunidade beta da Proteína Ligante de Cálcio S100 , Regulação Alostérica , Subunidade beta da Proteína Ligante de Cálcio S100/química , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Cálcio/metabolismo , Humanos , Transdução de Sinais , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Ligação Proteica , Conformação Proteica
2.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37645845

RESUMO

The C. difficile binary toxin (CDT) enters host cells via endosomal delivery like many other 'AB'-type binary toxins. In this study, the cell-binding component of CDT, termed CDTb, was found to bind and form pores in lipid bilayers upon depleting free Ca 2+ ion concentrations, and not by lowering pH, as found for other binary toxins (i.e., anthrax). Cryoelectron microscopy, nuclear magnetic resonance spectroscopy, surface plasmon resonance, electrochemical impedance spectroscopy, CDT toxicity studies, and site directed mutagenesis show that dissociation of Ca 2+ from a single site in receptor binding domain 1 (RBD1) of CDTb is consistent with a molecular mechanism in which Ca 2+ dissociation from RBD1 induces a "trigger" via conformational exchange that enables CDTb to bind and form pores in endosomal membrane bilayers as free Ca 2+ concentrations decrease during CDT endosomal delivery.

3.
PLoS One ; 18(1): e0280526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36652434

RESUMO

AP endonuclease 1 (APE1) processes DNA lesions including apurinic/apyrimidinic sites and 3´-blocking groups, mediating base excision repair and single strand break repair. Much effort has focused on developing specific inhibitors of APE1, which could have important applications in basic research and potentially lead to clinical anticancer agents. We used structural, biophysical, and biochemical methods to characterize several reported inhibitors, including 7-nitroindole-2-carboxylic acid (CRT0044876), given its small size, reported potency, and widespread use for studying APE1. Intriguingly, NMR chemical shift perturbation (CSP) experiments show that CRT0044876 and three similar indole-2-carboxylic acids bind a pocket distal from the APE1 active site. A crystal structure confirms these findings and defines the pose for 5-nitroindole-2-carboxylic acid. However, dynamic light scattering experiments show the indole compounds form colloidal aggregates that could bind (sequester) APE1, causing nonspecific inhibition. Endonuclease assays show the compounds lack significant APE1 inhibition under conditions (detergent) that disrupt aggregation. Thus, binding of the indole-2-carboxylic acids at the remote pocket does not inhibit APE1 repair activity. Myricetin also forms aggregates and lacks APE1 inhibition under aggregate-disrupting conditions. Two other reported compounds (MLS000552981, MLS000419194) inhibit APE1 in vitro with low micromolar IC50 and do not appear to aggregate in this concentration range. However, NMR CSP experiments indicate the compounds do not bind specifically to apo- or Mg2+-bound APE1, pointing to a non-specific mode of inhibition, possibly DNA binding. Our results highlight methods for rigorous interrogation of putative APE1 inhibitors and should facilitate future efforts to discover compounds that specifically inhibit this important repair enzyme.


Assuntos
Antineoplásicos , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Humanos , Antineoplásicos/farmacologia , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Indóis/farmacologia
4.
Biomol NMR Assign ; 17(1): 37-41, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36539586

RESUMO

Heterogeneous ribonuclear protein A18 (hnRNP A18) is an RNA binding protein (RBP) involved in the hypoxic cellular stress response and regulation of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression in melanoma, breast cancer, prostate cancer, and colon cancer solid tumors. hnRNP A18 is comprised of an N-terminal structured RNA recognition motif (RMM) and a C-terminal intrinsically disordered domain (IDD). Upon cellar stressors, such as UV and hypoxia, hnRNP A18 is phosphorylated by casein kinase 2 (CK2) and glycogen synthase kinase 3ß (GSK-3ß). After phosphorylation, hnRNP A18 translocates from the nucleus to the cytosol where it interacts with pro-survival mRNA transcripts for proteins such as hypoxia inducible factor 1α and CTLA-4. Both the hypoxic cellular response and modulation of immune checkpoints by cancer cells promote chemoradiation resistance and metastasis. In this study, the 1 H, 13 C, and 15 N backbone and sidechain resonances of the 172 amino acid hnRNP A18 were assigned sequence-specifically and provide a framework for future NMR-based drug discovery studies toward targeting hnRNP A18. These data will also enable the investigation of the dynamic structural changes within the IDD of hnRNP A18 upon phosphorylation by CK2 and GSK-3ß to provide critical insight into the structure and function of IDDs.


Assuntos
Proteínas de Transporte , Ribonucleoproteínas Nucleares Heterogêneas , Masculino , Humanos , RNA Mensageiro/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Antígeno CTLA-4/metabolismo , Proteínas de Transporte/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ligação Proteica
5.
J Mol Biol ; 434(23): 167872, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36354074

RESUMO

EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 µM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 µM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.


Assuntos
Calmodulina , Motivos EF Hand , Proteínas S100 , Humanos , Calmodulina/química , Proteínas S100/química , Ligação Proteica , Dobramento de Proteína , Regulação Alostérica , Conformação Proteica
6.
J Mol Biol ; 433(22): 167272, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34592217

RESUMO

The interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca2+, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg2+-bound CaM (MgCaM). Upon titration of Ca2+ into MgCaM-BP2, NMR chemical shift perturbations (CSPs) were observed for residues in the C-lobe, including those in the EF-hand Ca2+-binding domains, EF3 and EF4 (CaKD = 60 ± 7 nM). As higher concentrations of free Ca2+ were achieved, CSPs occurred for residues in the N-terminal lobe (N-lobe) including those in EF1 and EF2 (CaKD = 1000 ± 160 nM). Thermodynamic and kinetic Ca2+ binding studies showed that BP2 addition increased the Ca2+-binding affinity of CaM and slowed its Ca2+ dissociation rates (koff) in both the C- and N-lobe EF-hand domains, respectively. These data are consistent with BP2 binding to the C-lobe of CaM at low free Ca2+ concentrations (<100 nM) like those found at resting intracellular levels. As free Ca2+ levels approach 1000 nM, which is typical inside a cell upon an intracellular Ca2+-signaling event, BP2 is shown here to interact with both the N- and C-lobes of Ca2+-loaded CaM (CaCaM-BP2). Because this structural rearrangement observed for the CaCaM-BP2 complex occurs as intracellular free Ca2+ concentrations approach those typical of a Ca2+-signaling event (CaKD = 1000 ± 160 nM), this conformational change could be relevant to vitamin A transport by full-length CaCaM-STRA6.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo , Calmodulina/química , Calmodulina/genética , Motivos EF Hand , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana Transportadoras/genética , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Termodinâmica , Vitamina A/metabolismo , Proteínas de Peixe-Zebra/genética
7.
Biomol NMR Assign ; 15(2): 383-387, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34156643

RESUMO

SET (TAF-1ß/I2PP2A) is a ubiquitously expressed, multifunctional protein that plays a role in regulating diverse cellular processes, including cell cycle progression, migration, apoptosis, transcription, and DNA repair. SET expression is ubiquitous across all cell types. However, it is overexpressed or post-translationally modified in several solid tumors and blood cancers, where expression levels are correlated with worsening clinical outcomes. SET exerts its oncogenic effects primarily through the formation of antagonistic protein complexes with the tumor suppressor, protein phosphatase 2A (PP2A), and the well-known metastasis suppressor, nm23-H1. PP2A inhibition is often observed as a secondary driver of tumorigenesis and metastasis in human cancers. Preclinical studies have shown that the pharmacological reactivation of PP2A combined with potent inhibitors of the primary driver oncogene produces synergistic cell death and decreased drug resistance. Therefore, the development of novel inhibitors of the SET-PP2A interaction presents an attractive approach to reactivation of PP2A, and thereby, tumor suppression. NMR provides a unique platform to investigate protein targets in their natively folded state to identify protein and small-molecule ligands and report on the protein internal dynamics. The backbone 1HN, 13C, and 15N NMR resonance assignments were completed for the 204 amino acid nucleosome assembly protein-1 (NAP-1) domain of the human SET oncoprotein (residues 23-225). These assignments provide a vital first step toward the development of novel PP2A reactivators via SET-selective inhibition.


Assuntos
Proteína Fosfatase 2
8.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805767

RESUMO

Novel therapeutics are needed to treat pathologies associated with the Clostridioides difficile binary toxin (CDT), particularly when C. difficile infection (CDI) occurs in the elderly or in hospitalized patients having illnesses, in addition to CDI, such as cancer. While therapies are available to block toxicities associated with the large clostridial toxins (TcdA and TcdB) in this nosocomial disease, nothing is available yet to treat toxicities arising from strains of CDI having the binary toxin. Like other binary toxins, the active CDTa catalytic subunit of CDT is delivered into host cells together with an oligomeric assembly of CDTb subunits via host cell receptor-mediated endocytosis. Once CDT arrives in the host cell's cytoplasm, CDTa catalyzes the ADP-ribosylation of G-actin leading to degradation of the cytoskeleton and rapid cell death. Although a detailed molecular mechanism for CDT entry and host cell toxicity is not yet fully established, structural and functional resemblances to other binary toxins are described. Additionally, unique conformational assemblies of individual CDT components are highlighted herein to refine our mechanistic understanding of this deadly toxin as is needed to develop effective new therapeutic strategies for treating some of the most hypervirulent and lethal strains of CDT-containing strains of CDI.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Clostridioides difficile/patogenicidade , Infecção Hospitalar/tratamento farmacológico , Enterocolite Pseudomembranosa/tratamento farmacológico , Enterotoxinas/antagonistas & inibidores , ADP-Ribosilação/efeitos dos fármacos , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/deficiência , Actinas/genética , Antibacterianos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Infecção Hospitalar/metabolismo , Infecção Hospitalar/microbiologia , Infecção Hospitalar/patologia , Endocitose/efeitos dos fármacos , Enterocolite Pseudomembranosa/metabolismo , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/patologia , Enterotoxinas/química , Enterotoxinas/genética , Enterotoxinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína
9.
Molecules ; 26(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450915

RESUMO

S100B, a biomarker of malignant melanoma, interacts with the p53 protein and diminishes its tumor suppressor function, which makes this S100 family member a promising therapeutic target for treating malignant melanoma. However, it is a challenge to design inhibitors that are specific for S100B in melanoma versus other S100-family members that are important for normal cellular activities. For example, S100A1 is most similar in sequence and structure to S100B, and this S100 protein is important for normal skeletal and cardiac muscle function. Therefore, a combination of NMR and computer aided drug design (CADD) was used to initiate the design of specific S100B inhibitors. Fragment-based screening by NMR, also termed "SAR by NMR," is a well-established method, and was used to examine spectral perturbations in 2D [1H, 15N]-HSQC spectra of Ca2+-bound S100B and Ca2+-bound S100A1, side-by-side, and under identical conditions for comparison. Of the 1000 compounds screened, two were found to be specific for binding Ca2+-bound S100A1 and four were found to be specific for Ca2+-bound S100B, respectively. The NMR spectral perturbations observed in these six data sets were then used to model how each of these small molecule fragments showed specificity for one S100 versus the other using a CADD approach termed Site Identification by Ligand Competitive Saturation (SILCS). In summary, the combination of NMR and computational approaches provided insight into how S100A1 versus S100B bind small molecules specifically, which will enable improved drug design efforts to inhibit elevated S100B in melanoma. Such a fragment-based approach can be used generally to initiate the design of specific inhibitors for other highly homologous drug targets.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Proteínas S100/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Proposta de Concorrência , Humanos , Ligantes , Subunidade beta da Proteína Ligante de Cálcio S100/química , Proteínas S100/química , Bibliotecas de Moléculas Pequenas/química
10.
Biomol NMR Assign ; 15(1): 35-39, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33034833

RESUMO

Clostridioides difficile is a bacterial pathogen responsible for the majority of nosocomial infections in the developed world. C. difficile infection (CDI) is difficult to treat in many cases because hypervirulent strains have evolved that contain a third toxin, termed the C. difficile toxin (CDT), in addition to the two enterotoxins TcdA and TcdB. CDT is a binary toxin comprised of an enzymatic, ADP-ribosyltransferase (ART) toxin component, CDTa, and a pore-forming or delivery subunit, CDTb. In the absence of CDTa, CDTb assembles into two distinct di-heptameric states, a symmetric and an asymmetric form with both states having two surface-accessible host cell receptor-binding domains, termed RBD1 and RBD2. RBD1 has a unique amino acid sequence, when aligned to other well-studied binary toxins (i.e., anthrax), and it contains a novel Ca2+-binding site important for CDTb stability. The other receptor binding domain, RBD2, is critically important for CDT toxicity, and a domain such as this is missing altogether in other binary toxins and shows further that CDT is unique when compared to other binary toxins. In this study, the 1H, 13C, and 15N backbone and sidechain resonances of the 120 amino acid RBD2 domain of CDTb (residues 757-876) were assigned sequence-specifically and provide a framework for future NMR-based drug discovery studies directed towards targeting the most virulent strains of CDI.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Toxinas Bacterianas , Clostridioides difficile
11.
Biomol NMR Assign ; 14(2): 347, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32248334

RESUMO

The article 1HN, 13C, and 15N resonance assignments of human calmodulin bound to a peptide derived from the STRA6 vitamin A transporter (CaMBP2), written by Kristen M. Varney, Paul T. Wilder, Raquel Godoy-Ruiz, Filippo Mancia and David J. Weber, was originally published Online First without Open Access. After publication in volume 13, issue 2, page [275-278] the author decided to opt for Open Choice and to make the article an Open Access publication.

12.
Proc Natl Acad Sci U S A ; 117(2): 1049-1058, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31896582

RESUMO

Targeting Clostridium difficile infection is challenging because treatment options are limited, and high recurrence rates are common. One reason for this is that hypervirulent C. difficile strains often have a binary toxin termed the C. difficile toxin, in addition to the enterotoxins TsdA and TsdB. The C. difficile toxin has an enzymatic component, termed CDTa, and a pore-forming or delivery subunit termed CDTb. CDTb was characterized here using a combination of single-particle cryoelectron microscopy, X-ray crystallography, NMR, and other biophysical methods. In the absence of CDTa, 2 di-heptamer structures for activated CDTb (1.0 MDa) were solved at atomic resolution, including a symmetric (SymCDTb; 3.14 Å) and an asymmetric form (AsymCDTb; 2.84 Å). Roles played by 2 receptor-binding domains of activated CDTb were of particular interest since the receptor-binding domain 1 lacks sequence homology to any other known toxin, and the receptor-binding domain 2 is completely absent in other well-studied heptameric toxins (i.e., anthrax). For AsymCDTb, a Ca2+ binding site was discovered in the first receptor-binding domain that is important for its stability, and the second receptor-binding domain was found to be critical for host cell toxicity and the di-heptamer fold for both forms of activated CDTb. Together, these studies represent a starting point for developing structure-based drug-design strategies to target the most severe strains of C. difficile.


Assuntos
ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/química , Enterotoxinas/metabolismo , ADP Ribose Transferases/genética , Animais , Proteínas de Bactérias/genética , Sítios de Ligação , Fenômenos Biofísicos , Chlorocebus aethiops , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Domínios Proteicos , Células Vero
13.
Proc Natl Acad Sci U S A ; 116(35): 17290-17297, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31399543

RESUMO

Second harmonic generation (SHG) is an emergent biophysical method that sensitively measures real-time conformational change of biomolecules in the presence of biological ligands and small molecules. This study describes the successful implementation of SHG as a primary screening platform to identify fragment ligands to oncogenic Kirsten rat sarcoma (KRas). KRas is the most frequently mutated driver of pancreatic, colon, and lung cancers; however, there are few well-characterized small molecule ligands due to a lack of deep binding pockets. Using SHG, we identified a fragment binder to KRasG12D and used 1H 15N transverse relaxation optimized spectroscopy (TROSY) heteronuclear single-quantum coherence (HSQC) NMR to characterize its binding site as a pocket adjacent to the switch 2 region. The unique sensitivity of SHG furthered our study by revealing distinct conformations induced by our hit fragment compared with 4,6-dichloro-2-methyl-3-aminoethyl-indole (DCAI), a Ras ligand previously described to bind the same pocket. This study highlights SHG as a high-throughput screening platform that reveals structural insights in addition to ligand binding.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Substituição de Aminoácidos , Sítios de Ligação , Humanos , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Proteínas Proto-Oncogênicas p21(ras)/genética
14.
Proc Natl Acad Sci U S A ; 116(36): 17614-17615, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427532
15.
Biomol NMR Assign ; 13(2): 305-308, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31093909

RESUMO

In mammalian cells, the process of DNA ligation is necessary during DNA replication to create an intact "lagging" strand from a series of smaller Okazaki fragments and to repair DNA strand breaks that arise either due to the direct action of a DNA damaging agent or as a consequence of DNA damage excision during DNA repair. In humans, there are three genes that encode for members of the DNA ligase family (LIG1, LIG3 and LIG4) (Ellenberger and Tomkinson in Ann Rev Biochem 77:313-338. 2008). Although these genes code for polypeptides with overlapping functions in the nucleus, the only mitochondrial DNA ligase (DNA ligase IIIα), which is essential for mitochondrial genome maintenance, is encoded by the LIG3 gene (Lakshmipathy and Campbell in Mol Cell Biol 19:3869-3876, 1999; Zong et al. in Mol Cell 61:667-676, 2016) Because mitochondria play a central and multifunctional role in malignant tumor progression, there is emerging interest in targeting key mitochondrial proteins. Notably, there is evidence in pre-clinical models that inhibitors of DNA ligase IIIα, which is frequently up-regulated in cancer, preferentially target cancer cells via their effect on mitochondria (Zong et al. 2016). Since NMR spectroscopy provides unique capabilities for identifying small molecules that bind specifically to DNA ligase IIIα versus the other DNA ligases), the backbone 1HN, 13C, and 15N NMR resonance assignments were completed for a 222 amino acid DNA-binding domain of human DNA ligase III. These NMR assignments represent a vital first step towards developing DNA ligase III-selective inhibitors.


Assuntos
DNA Ligase Dependente de ATP/química , DNA Ligase Dependente de ATP/metabolismo , DNA/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Humanos , Domínios Proteicos
16.
Biomol NMR Assign ; 13(2): 275-278, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30875027

RESUMO

Vitamin A is a necessary nutrient for all mammals, and it is required for the transcription of many genes and vital for vision. While fasting, the vitamin A alcohol form (Retinol) from storage in the liver is mobilized and transported through the bloodstream while bound to retinol binding protein (RBP). Details of how exactly vitamin A is released from RBP and taken into the cells are still unclear. As part of the effort to elucidate the specifics of this process, single-particle cryo-electron microscopy structural studies of STRA6 (the RBP receptor 75-kDa transmembrane receptor protein) were recently reported by Chen et al. (Science, https://doi.org/10.1126/science.aad8266 , 2016). Interestingly, STRA6 from zebrafish was shown to be a stable dimer and bound to calmodulin (CaM), forming a 180-kDa complex. The topology of the STRA6 complex includes 18 transmembrane helices (nine per protomer) and two long horizontal intramembrane helices interacting at the dimer core (Chen et al., in Science, https://doi.org/10.1126/science.aad8266 , 2016). CaM was shown to interact with three regions of STRA6, termed CaMBP1, CaMBP2, and CaMBP3, with the most extensive interactions involving CaMBP2. To further our understanding of Ca2+-dependence of CaM-STRA6 complex formation, studies of the structure and dynamic properties of the CaMBP2-CaM complex were initiated. For this, the 1HN, 13C, and 15N backbone resonance assignments of the 148 amino acid Ca2+-bound calmodulin protein bound to the 27-residue CaMBP2 peptide derived from STRA6 were completed here using heteronuclear multidimensional NMR spectroscopy.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Humanos , Ligação Proteica
17.
Methods Mol Biol ; 1929: 291-310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30710281

RESUMO

S100B is a small, dimeric, calcium-binding protein that is implicated in various diseases, most significantly cancer; therefore, there is interest in identifying S100B inhibitors that may have therapeutic value (Bresnick et al. Nat Rev Cancer 15:96-109, 2015; Chong et al. Curr Med Chem 23:1571-1596). Two fluorescence polarization competition assays (FPCA) are described here for S100B and S100A1 that are amenable to high-throughput screening (HTS) campaigns and can be used to determine the binding affinity (K i) of the inhibitors. One FPCA is used to identify and characterize inhibitors of S100B with the aim of finding new therapeutics, and the other was developed as a counter-screen to avoid inhibitors of S100A1 due to its role in regulating skeletal and cardiac muscle function. Also outlined are methods for expressing and purifying S100B and S100A1 in quantities needed for performing large HTS campaigns.


Assuntos
Proteínas S100/química , Proteínas S100/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Bovinos , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
18.
Physiol Rep ; 6(15): e13822, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30101473

RESUMO

Calmodulin (CaM) and S100A1 fine-tune skeletal muscle Ca2+ release via opposite modulation of the ryanodine receptor type 1 (RyR1). Binding to and modulation of RyR1 by CaM and S100A1 occurs predominantly at the region ranging from amino acid residue 3614-3640 of RyR1 (here referred to as CaMBD2). Using synthetic peptides, it has been shown that CaM binds to two additional regions within the RyR1, specifically residues 1975-1999 and 4295-4325 (CaMBD1 and CaMBD3, respectively). Because S100A1 typically binds to similar motifs as CaM, we hypothesized that S100A1 could also bind to CaMBD1 and CaMBD3. Our goals were: (1) to establish whether S100A1 binds to synthetic peptides containing CaMBD1 and CaMBD3 using isothermal calorimetry (ITC), and (2) to identify whether S100A1 and CaM modulate RyR1 Ca2+ release activation via sites other than CaMBD2 in RyR1 in its native cellular context. We developed the mouse model (RyR1D-S100A1KO), which expresses point mutation RyR1-L3625D (RyR1D) that disrupts the modulation of RyR1 by CaM and S100A1 at CaMBD2 and also lacks S100A1 (S100A1KO). ITC assays revealed that S100A1 binds with different affinities to CaMBD1 and CaMBD3. Using high-speed Ca2+ imaging and a model for Ca2+ binding and transport, we show that the RyR1D-S100A1KO muscle fibers exhibit a modest but significant increase in myoplasmic Ca2+ transients and enhanced Ca2+ release flux following field stimulation when compared to fibers from RyR1D mice, which were used as controls to eliminate any effect of binding at CaMBD2, but with preserved S100A1 expression. Our results suggest that S100A1, similar to CaM, binds to CaMBD1 and CaMBD3 within the RyR1, but that CaMBD2 appears to be the primary site of RyR1 regulation by CaM and S100A1.


Assuntos
Calmodulina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas S100/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Calorimetria/métodos , Acoplamento Excitação-Contração/fisiologia , Masculino , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteínas S100/deficiência
19.
Bioorg Med Chem Lett ; 28(10): 1949-1953, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29705141

RESUMO

The tumorigenic activity of upregulated Mcl-1 is manifested by binding the BH3 α-helical death domains of opposing Bcl-2 family members, neutralizing them and preventing apoptosis. Accordingly, the development of Mcl-1 inhibitors largely focuses on synthetic BH3 mimicry. The condensation of α-pyridinium methyl ketone salts and α,ß-unsaturated carbonyl compounds in the presence of a source of ammonia, or the Kröhnke pyridine synthesis, is a simple approach to afford highly functionalized pyridines. We adapted this chemistry to rapidly generate low-micromolar inhibitors of Mcl-1 wherein the 2,4,6-substituents were predicted to mimic the i, i + 2 and i + 7 side chains of the BH3 α-helix.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Piridinas/química , Sítios de Ligação , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Piridinas/metabolismo , Relação Estrutura-Atividade
20.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 4): 209-214, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368279

RESUMO

The heterogeneous ribonucleoprotein A18 (hnRNP A18) is upregulated in hypoxic regions of various solid tumors and promotes tumor growth via the coordination of mRNA transcripts associated with pro-survival genes. Thus, hnRNP A18 represents an important therapeutic target in tumor cells. Presented here is the first X-ray crystal structure to be reported for the RNA-recognition motif of hnRNP A18. By comparing this structure with those of homologous RNA-binding proteins (i.e. hnRNP A1), three residues on one face of an antiparallel ß-sheet (Arg48, Phe50 and Phe52) and one residue in an unstructured loop (Arg41) were identified as likely to be involved in protein-nucleic acid interactions. This structure helps to serve as a foundation for biophysical studies of this RNA-binding protein and structure-based drug-design efforts for targeting hnRNP A18 in cancer, such as malignant melanoma, where hnRNP A18 levels are elevated and contribute to disease progression.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/química , Proteínas de Ligação a RNA/química , RNA/química , Motivos de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Endopeptidases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA