Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pediatr ; 11: 1153623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360365

RESUMO

Introduction: Multisystem inflammatory syndrome in children (MIS-C) has been reported as one of the cytokine storm syndromes associated with COVID-19. Despite the several proposed diagnostic criteria, MIS-C remains a diagnostic and clinical challenge. Recent studies have demonstrated that platelets (PLTs) play a crucial role in COVID-19 infection and its prognosis. This study aimed to investigate the clinical importance of PLT count and PLT indices in predicting MIS-C severity in children. Patients and methods: We conducted a retrospective single-center study at our university hospital. A total of 43 patients diagnosed with MIS-C during a 2-year period (from October 2020 to October 2022) were included in the study. MIS-C severity was evaluated according to the composite severity score. Results: Half of the patients were treated in the pediatric intensive care unit. No single clinical sign was associated with a severe condition, except for shock (p = 0.041). All the routine biomarkers, such as complete blood count (CBC) and C-reactive protein (CRP), used for MIS-C diagnosis were significant in predicting MIS-C severity. Single PLT parameters, such as mean PLT volume, plateletcrit, or PLT distribution width, did not differ between the severity groups. However, we found that a combination of PLT count and the previously mentioned PLT indices had the potential to predict MIS-C severity. Conclusions: Our study emphasizes the importance of PLT in MIS-C pathogenesis and severity. It revealed that together with routine biomarkers (e.g., CBC and CRP), it could highly improve the prediction of MIS-C severity.

2.
Biomedicines ; 10(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35327404

RESUMO

With respect to structural and functional cardiac disorders, heart failure (HF) is divided into HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Oxidative stress contributes to the development of both HFrEF and HFpEF. Identification of a broad spectrum of reactive oxygen species (ROS)-induced pathways in preclinical models has provided new insights about the importance of ROS in HFrEF and HFpEF development. While current treatment strategies mostly concern neuroendocrine inhibition, recent data on ROS-induced metabolic pathways in cardiomyocytes may offer additional treatment strategies and targets for both of the HF forms. The purpose of this article is to summarize the results achieved in the fields of: (1) ROS importance in HFrEF and HFpEF pathophysiology, and (2) treatments for inhibiting ROS-induced pathways in HFrEF and HFpEF patients. ROS-producing pathways in cardiomyocytes, ROS-activated pathways in different HF forms, and treatment options to inhibit their action are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA