Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Am J Hum Genet ; 111(3): 594-613, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38423010

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Assuntos
Epilepsia Generalizada , Atrofia Óptica , Animais , Humanos , Criança , Peixe-Zebra/genética , Atrofia Óptica/genética , Fenótipo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
2.
Neurol Sci ; 45(3): 1007-1016, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37853291

RESUMO

BACKGROUND: Transition from child-centered to adult-centered healthcare is a gradual process that addresses the medical, psychological, and educational needs of young people in the management of their autonomy in making decisions about their health and their future clinical assistance. This transfer is challenging across all chronic diseases but can be particularly arduous in rare neurological conditions. AIM: To describe the current practice on the transition process for young patients in centers participating in the European Reference Network for Rare Neurological Diseases (ERN-RND). METHODS: Members of the ERN-RND working group developed a questionnaire considering child-to-adult transition issues and procedures in current clinical practice. The questionnaire included 20 questions and was sent to members of the health care providers (HCPs) participating in the network. RESULTS: Twenty ERN-RND members (75% adult neurologists; 25% pediatricians; 5% nurses or study coordinators) responded to the survey, representing 10 European countries. Transition usually occurs between 16 and 18 years of age, but 55% of pediatric HCPs continue to care for their patients until they reach 40 years of age or older. In 5/20 ERN-RND centers, a standardized procedure managing transition is currently adopted, whereas in the remaining centers, the transition from youth to adult service is usually assisted by pediatricians as part of their clinical practice. CONCLUSIONS: This survey demonstrated significant variations in clinical practice between different centers within the ERN-RND network. It provided valuable data on existing transition programs and highlighted key challenges in managing transitions for patients with rare neurological disorders.


Assuntos
Atenção à Saúde , Doenças do Sistema Nervoso , Adulto , Adolescente , Humanos , Criança , Inquéritos e Questionários , Europa (Continente) , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/terapia , Doenças Raras/diagnóstico , Doenças Raras/terapia
3.
Cerebellum ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37955812

RESUMO

With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials.This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes.

4.
Cerebellum ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897626

RESUMO

Dysarthria is a common and debilitating symptom of many neurodegenerative diseases, including those resulting in ataxia. Changes to speech lead to significant reductions in quality of life, impacting the speaker in most daily activities. Recognition of its importance as an objective outcome measure in clinical trials for ataxia is growing. Its viability as an endpoint across the disease spectrum (i.e. pre-symptomatic onwards) means that trials can recruit ambulant individuals and later-stage individuals who are often excluded because of difficulty completing lower limb tasks. Here we discuss the key considerations for speech testing in clinical trials including hardware selection, suitability of tasks and their role in protocols for trials and propose a core set of tasks for speech testing in clinical trials. Test batteries could include forms suitable for remote short, sensitive and easy to use, with norms available in several languages. The use of artificial intelligence also could improve accuracy and automaticity of analytical pipelines in clinic and trials.

5.
J Neurol ; 270(12): 5784-5792, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37578488

RESUMO

BACKGROUND AND OBJECTIVES: Hereditary spastic paraplegias (HSPs) are heterogenous genetic disorders characterized by progressive pyramidal tract involvement. SPG76 is a recently identified form of HSP, caused by biallelic calpain-1 (CAPN1) variants. The most frequently described MRI abnormality in SPG76 is mild cerebellar atrophy and non-specific white matter abnormalities were reported in only one case. Following the identification of prominent white matter abnormalities in a subject with CAPN1 variants, which delayed the diagnosis, we aimed to verify the presence of MRI patterns of white matter involvement specific to this HSP. METHODS: We performed a retrospective radiological qualitative analysis of 15 subjects with SPG76 (4 previously unreported) initially screened for white matter involvement. Moreover, we performed quantitative analyses in our proband with available longitudinal studies. RESULTS: We observed bilateral, periventricular white matter involvement in 12 subjects (80%), associated with multifocal subcortical abnormalities in 5 of them (33.3%). Three subjects (20%) presented only multifocal subcortical involvement. Longitudinal quantitative analyses of our proband revealed increase in multifocal white matter lesion count and increased area of periventricular white matter involvement over time. DISCUSSION: SPG76 should be added to the list of HSPs with associated white matter abnormalities. We identified periventricular white matter involvement in subjects with SPG76, variably associated with multifocal subcortical white matter abnormalities. These findings, in the presence of progressive spastic paraparesis, can mislead the diagnostic process towards an acquired white matter disorder.


Assuntos
Paraparesia Espástica , Paraplegia Espástica Hereditária , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Retrospectivos , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Imageamento por Ressonância Magnética
6.
Minerva Pediatr (Torino) ; 75(1): 117-123, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33820410

RESUMO

Friedreich ataxia (FRDA) is the most common form of ataxia in late childhood. Neurological manifestations often precede cardiac involvement, presenting mainly as hypertrophic cardiomyopathy. We describe a toddler with apparently isolated severe heart failure, successfully managed with heart transplant (HT). Although well described in adolescents and adults, onset of FRDA is very uncommon in toddlers and neurological ataxic features are predominant. The presenting symptom of cardiomyopathy is very rare. Similar history is rarely reported in literature, that we described, including an aggressive cardiomyopathy in children younger than 5 years-old. RESULTS: Our patient was diagnosed with FRDA at a postoperative stage due to minimal neurological manifestations. Moreover, the novelty of this study lies in demonstrating a major DNA triplet repeat expansion in skeletal muscle compared to DNA from peripheral blood leukocytes. These results support the concept that triplet repeat expansion is variable among different tissues in FRDA, and in our case it was more expanded in the post mitotic muscular tissue than in blood cells. We believe on the importance of taking in consideration this rare condition even in a toddler with apparently isolated cardiomyopathy and especially when conventional investigations give negative results. We discuss potential trigger effect of HT as a precipitating factor in manifesting neurological symptoms. This observation corresponds to our experience and relates to three patients described so far (the third patient died suddenly). Early onset cardiomyopathy with FRDA should increase awareness of this rare condition and we highlight HT successful outcome. Further reports are needed to delineate this rare condition in youngsters.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Ataxia de Friedreich , Criança , Adulto , Adolescente , Humanos , Pré-Escolar , Ataxia de Friedreich/complicações , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Expansão das Repetições de Trinucleotídeos , DNA
7.
Antioxidants (Basel) ; 11(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358497

RESUMO

Redox imbalance, mitochondrial dysfunction, and inflammation play a major role in the pathophysiology of X-linked adrenoleukodystrophy (X-ALD), an inherited neurodegenerative disease caused by mutations in the ABCD1 gene, encoding the protein responsible for peroxisomal import and degradation of very long chain fatty acids (VLCFAs). Therefore, VLCFAs accumulate in tissues and plasma, constituting a pathognomonic biomarker for diagnosis. However, the precise role of VLCFA accumulation on the diverse clinical phenotypes of X-ALD and the pathogenic link between VLCFAs and oxidative stress remain currently unclear. This study proposes ferroptosis as a crucial contributor to the disease development and progression. The expression profiles of "GPX4-glutathione" and "NQO1-CoQ10" ferroptosis pathways have been analyzed in fibroblasts of one patient with AMN, the late onset and slowly progressive form of X-ALD, and in two patients with cALD, the cerebral inflammatory demyelinating form of early childhood. Furthermore, as no effective treatments are currently available, especially for the rapidly progressing form of X-ALD (cALD), the efficacy of NAC treatment has also been evaluated to open the way toward novel combined therapies. Our findings demonstrate that lipid peroxides accumulate in X-ALD fibroblasts and ferroptosis-counteracting enzymes are dysregulated, highlighting a different antioxidant response in patients with AMN and cALD.

8.
Front Hum Neurosci ; 16: 797282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992946

RESUMO

Background: Gait Analysis of healthy people, imitating pathological conditions while walking, has increased our understanding of biomechanical factors. The influence of the pelvis as a biomechanical constraint during gait is not specifically studied. How could mimicking a pelvic attitude influence the dynamic mechanical interaction of the body segments? We proposed an investigation of the pelvic attitude role on the gait pattern of typically developed people when they mimicked pelvic anteversion and posteroversion. Materials and methods: Seventeen healthy volunteers were enrolled in this study (mean age 24.4 ± 5.5). They simulated a pelvic anteversion and posteroversion during walking, exaggerating these postures as much as possible. 3D gait analysis was conducted using an optoelectronic system with eight cameras (Vicon MX, Oxford, United Kingdom) and two force plates (AMTI, Or-6, Watertown, MA, United States). The kinematic, kinetic, and spatio-temporal parameters were compared between the three walking conditions (anteversion, posteroversion, and normal gait). Results: In Pelvic Anteversion gait (PA) we found: increased hip flexion (p < 0.0001), increased knee flexion during stance (p = 0.02), and reduction of ankle flexion-extension Range of Motion (RoM) compared with Pelvic Normal gait (PN). In Pelvic Posteroversion gait (PP) compared with PN, we found: decreased hip flexion-extension RoM (p < 0.01) with a tendency to hip extension, decreased knee maximum extension in stance (p = 0.033), and increased ankle maximum dorsiflexion in stance (p = 0.002). Conclusion: The configuration of PA contains gait similarities and differences when compared with pathologic gait where there is an anteversion as seen in children with Cerebral Palsy (CP) or Duchenne Muscular Dystrophy (DMD). Similarly, attitudes of PP have been described in patients with Charcot-Marie-Tooth Syndrome (CMT) or patients who have undergone Pelvic Osteotomy (PO). Understanding the dynamic biomechanical constraints is essential to the assessment of pathological behavior. The central nervous system adapts motor behavior in interaction with body constraints and available resources.

9.
Neuroepidemiology ; 56(3): 212-218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35636410

RESUMO

OBJECTIVE: The aim of this study was to estimate the Friedreich's ataxia (FRDA) prevalence in a highly populated region of Italy (previous studies in small geographic areas gave a largely variable prevalence) and to define the patients' molecular and clinical characteristics. METHODS: For the point-prevalence study, we considered patients belonging to families with a molecular diagnosis of FRDA and resident in Latium on 1 January 2019. The crude prevalence of FRDA, specific for age and sex, was calculated and standardized for age using the Italian population. Moreover, we investigated possible correlations among patients' genetic profile, symptoms, and age of onset. RESULTS: We identified 63 FRDA patients; the crude prevalence for total, males, and females were 1.07 (95% CI: 0.81-1.37), 0.81 (95% CI: 0.54-1.22), and 1.32 (95% CI: 0.97-1.79), per 100,000 inhabitants. We divided FRDA patients by three age-at-onset groups (early-EOFA 73%; late-LOFA 11.1%; very late-VLOFA 15.9%) and found significant differences in the scale for the assessment and rating of ataxia (SARA; p = 0.001), a biased distribution of the shorter allele (p = 0.001), an excess of scoliosis and cardiomyopathy (p = 0.001) in EOFA. To determine the contribution of patients' molecular and clinical characteristics to the annual rate of progression, we performed a multivariate regression analysis that gave an R2 value of 45.3%. CONCLUSIONS: We estimated the crude and standardized prevalence of FRDA in Latium. A clinical classification (EOFA, LOFA, VLOFA) gave significant correlations. This epidemiological estimate allows monitoring disease prevalence over time in cohort studies and/or for developing disease registry.


Assuntos
Ataxia de Friedreich , Estudos de Coortes , Estudos Transversais , Feminino , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/epidemiologia , Ataxia de Friedreich/genética , Humanos , Itália/epidemiologia , Masculino , Prevalência
10.
Front Hum Neurosci ; 16: 822205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422690

RESUMO

Background and Objective: Absolute angle represents the inclination of a body segment relative to a fixed reference in space. This work compares the absolute and relative angles for exploring biomechanical gait constraints. Methods: Gait patterns of different neuromotor conditions were analyzed using 3D gait analysis: normal gait (healthy, H), Cerebral Palsy (CP), Charcot Marie Tooth (CMT) and Duchenne Muscular Dystrophy (DMD), representing central and peripheral nervous system and muscular disorders, respectively. Forty-two children underwent gait analysis: 10 children affected by CP, 10 children by CMT, 10 children by DMD and 12 healthy children. The kinematic and kinetic parameters were collected to describe the biomechanical pattern of participants' lower limbs. The absolute angles of thigh, leg and foot were calculated using the trigonometric relationship of the tangent. For each absolute series, the mean, range, maximum, minimum and initial contact were calculated. Kinematic and kinetic gait data were studied, and the results were compared with the literature. Results: Statistical analysis of the absolute angles showed how, at the local level, the single segments (thigh, leg and foot) behave differently depending on the pathology. However, if the lower limb is studied globally (sum of the kinematics of the three segments: thigh, leg and foot), a biomechanical constraint emerges. Conclusion: Each segment compensates separately for the disease deficit so as to maintain a global biomechanical invariance. Using a model of inter-joint co-variation could improve the interpretation of the clinical gait pattern.

11.
J Clin Med ; 11(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35207341

RESUMO

BACKGROUND: Children with ataxia experience balance and movement coordination difficulties and needs intensive physical intervention to maintain functional abilities and counteract the disorder. Exergaming represents a valuable strategy to provide engaging physical intervention to children with ataxia, sustaining their motivation to perform the intervention. This paper aims to describe the effect of a home-conducted exergame-based exercise training for upper body movements control of children with ataxia on their ataxic symptoms, walking ability, and hand dexterity. METHODS: Eighteen children with ataxia were randomly divided into intervention and control groups. Participants in the intervention group were asked to follow a 12-week motor activity program at home using the Niurion® exergame. Blind assessments of participants' ataxic symptoms, dominant and non-dominant hand dexterity, and walking ability were conducted. RESULTS: On average, the participants performed the intervention for 61.5% of the expected time. At the end of the training, participants in the intervention group showed improved hand dexterity that worsened in the control group. CONCLUSION: The presented exergame enhanced the participants' hand dexterity. However, there is a need for exergames capable of maintaining a high level of players' motivation in playing. It is advisable to plan a mixed intervention to take care of the multiple aspects of the disorder.

12.
J Med Genet ; 59(9): 888-894, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34675124

RESUMO

BACKGROUND: Joubert syndrome (JS) is a recessively inherited ciliopathy characterised by congenital ocular motor apraxia (COMA), developmental delay (DD), intellectual disability, ataxia, multiorgan involvement, and a unique cerebellar and brainstem malformation. Over 40 JS-associated genes are known with a diagnostic yield of 60%-75%.In 2018, we reported homozygous hypomorphic missense variants of the SUFU gene in two families with mild JS. Recently, heterozygous truncating SUFU variants were identified in families with dominantly inherited COMA, occasionally associated with mild DD and subtle cerebellar anomalies. METHODS: We reanalysed next generation sequencing (NGS) data in two cohorts comprising 1097 probands referred for genetic testing of JS genes. RESULTS: Heterozygous truncating and splice-site SUFU variants were detected in 22 patients from 17 families (1.5%) with strong male prevalence (86%), and in 8 asymptomatic parents. Patients presented with COMA, hypotonia, ataxia and mild DD, and only a third manifested intellectual disability of variable severity. Brain MRI showed consistent findings characterised by vermis hypoplasia, superior cerebellar dysplasia and subtle-to-mild abnormalities of the superior cerebellar peduncles. The same pattern was observed in two out of three tested asymptomatic parents. CONCLUSION: Heterozygous truncating or splice-site SUFU variants cause a novel neurodevelopmental syndrome encompassing COMA and mild JS, which likely represent overlapping entities. Variants can arise de novo or be inherited from a healthy parent, representing the first cause of JS with dominant inheritance and reduced penetrance. Awareness of this condition will increase the diagnostic yield of JS genetic testing, and allow appropriate counselling about prognosis, medical monitoring and recurrence risk.


Assuntos
Anormalidades Múltiplas , Ataxia Cerebelar , Anormalidades do Olho , Deficiência Intelectual , Doenças Renais Císticas , Anormalidades Múltiplas/genética , Ataxia Cerebelar/genética , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Anormalidades do Olho/genética , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/genética , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Masculino , Fenótipo , Proteínas Repressoras/genética , Retina/anormalidades
13.
J Med Genet ; 59(9): 878-887, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34656997

RESUMO

BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.


Assuntos
Proteínas Mitocondriais , Ubiquinona , Linhagem Celular , Criança , Humanos , Recém-Nascido , Proteínas Mitocondriais/genética , Neuroimagem , Fenótipo , Ubiquinona/genética , Ubiquinona/metabolismo
14.
Hum Mutat ; 43(1): 67-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747546

RESUMO

Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal to neurodevelopmental disorder, and cerebellar atrophy with or without seizures, without obvious genotype-phenotype associations. We describe two families at the mildest end of the spectrum, differing in clinical presentation despite a common genotype at the BRAT1 locus. Two siblings displayed nonprogressive congenital ataxia and shrunken cerebellum on magnetic resonance imaging. A third unrelated patient showed normal neurodevelopment, adolescence-onset seizures, and ataxia, shrunken cerebellum, and ultrastructural abnormalities on skin biopsy, representing the mildest form of NEDCAS hitherto described. Exome sequencing identified the c.638dup and the novel c.1395G>A BRAT1 variants, the latter causing exon 10 skippings. The p53-MCL test revealed normal ATM kinase activity. Our findings broaden the allelic and clinical spectrum of BRAT1-related disease, which should be suspected in presence of nonprogressive cerebellar signs, even without a neurodevelopmental disorder.


Assuntos
Proteínas Nucleares , Convulsões , Estudos de Associação Genética , Genótipo , Humanos , Mutação , Proteínas Nucleares/genética , Fenótipo , Convulsões/genética
15.
Neurol Genet ; 7(2): e559, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33977142

RESUMO

OBJECTIVE: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is regarded a relatively mild leukodystrophy, diagnosed by characteristic long tract abnormalities on MRI and biallelic variants in DARS2, encoding mitochondrial aspartyl-tRNA synthetase (mtAspRS). DARS2 variants in LBSL are almost invariably compound heterozygous; in 95% of cases, 1 is a leaky splice site variant in intron 2. A few severely affected patients, still fulfilling the MRI criteria, have been described. We noticed highly unusual MRI presentations in 15 cases diagnosed by WES. We examined these cases to determine whether they represent consistent novel LBSL phenotypes. METHODS: We reviewed clinical features, MRI abnormalities, and gene variants and investigated the variants' impact on mtAspRS structure and mitochondrial function. RESULTS: We found 2 MRI phenotypes: early severe cerebral hypoplasia/atrophy (9 patients, group 1) and white matter abnormalities without long tract involvement (6 patients, group 2). With antenatal onset, microcephaly, and arrested development, group 1 patients were most severely affected. DARS2 variants were severer than for classic LBSL and severer for group 1 than group 2. All missense variants hit mtAspRS regions involved in tRNAAsp binding, aspartyl-adenosine-5'-monophosphate binding, and/or homodimerization. Missense variants expressed in the yeast DARS2 ortholog showed severely affected mitochondrial function. CONCLUSIONS: DARS2 variants are associated with highly heterogeneous phenotypes. New MRI presentations are profound cerebral hypoplasia/atrophy and white matter abnormalities without long tract involvement. Our findings have implications for diagnosis and understanding disease mechanisms, pointing at dominant neuronal/axonal involvement in severe cases. In line with this conclusion, activation of biallelic DARS2 null alleles in conditional transgenic mice leads to massive neuronal apoptosis.

16.
Cerebellum Ataxias ; 8(1): 4, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407890

RESUMO

COVID-19 outbreak profoundly impacted on daily-life of patients with neurodegenerative diseases, including those with ataxia. Effects on interventional trials have been recently described. Conversely, changes in physical activity programs, which are crucial in care of ataxic patients, have not been assessed yet.Here we used a structured electronic survey to interview twenty patients with Friedreich ataxia (FA) on changes in physical activity during the lockdown in Italy.Regular physiotherapy was interrupted for most patients and up to 60% of them referred a substantial worsening of self-perceived global health. However, FA patients (especially those mildly affected) adopted voluntarily home-based training strategies and, in 30% of cases, used technology-based tools (TBTs) for exercise.COVID-19 crisis thus disclosed the urgent need to support ataxic patients improving systems for remote physical activity and technology-based assistance.

17.
Brain Sci ; 11(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450882

RESUMO

The PLP1 gene, located on chromosome Xq22, encodes the proteolipid protein 1 and its isoform DM20. Mutations in PLP1 cause a spectrum of white matter disorders of variable severity. Here we report on four additional HEMS patients from three families harboring three novel PLP1 mutations in exon 3B detected by targeted next-generation sequencing. Patients experienced psychomotor delay or nystagmus in the first year of age and then developed ataxic-spastic or ataxic syndrome, compatible with a phenotype of intermediate severity in the spectrum of PLP1-related disorders. Regression occurred at the beginning of the third decade of the eldest patient. Extrapyramidal involvement was rarely observed. Brain MRI confirmed the involvement of structures that physiologically myelinate early, although the pattern of abnormalities may differ depending on the age at which the study is performed. These new cases contribute to expanding the phenotypic and genotypic spectrum of HEMS. Additional studies, especially enriched by systematic functional evaluations and long-term follow-up, are welcome to better delineate the natural history of this rare hypomyelinating leukodystrophy.

18.
J Med Genet ; 58(7): 475-483, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32737135

RESUMO

BACKGROUND: Dominant and recessive variants in the KIF1A gene on chromosome 2q37.3 are associated with several phenotypes, although only three syndromes are currently listed in the OMIM classification: hereditary sensory and autonomic neuropathy type 2 and spastic paraplegia type 30, both recessively inherited, and mental retardation type 9 with dominant inheritance. METHODS: In this retrospective multicentre study, we describe the clinical, neuroradiological and genetic features of 19 Caucasian patients (aged 3-65 years) harbouring heterozygous KIF1A variants, and extensively review the available literature to improve current classification of KIF1A-related disorders. RESULTS: Patients were divided into two groups. Group 1 comprised patients with a complex phenotype with prominent pyramidal signs, variably associated in all but one case with additional features (ie, epilepsy, ataxia, peripheral neuropathy, optic nerve atrophy); conversely, patients in group 2 presented an early onset or congenital ataxic phenotype. Fourteen different heterozygous missense variants were detected by next-generation sequencing screening, including three novel variants, most falling within the kinesin motor domain. CONCLUSION: The present study further enlarges the clinical and mutational spectrum of KIF1A-related disorders by describing a large series of patients with dominantly inherited KIF1A pathogenic variants ranging from pure to complex forms of hereditary spastic paraparesis/paraplegias (HSP) and ataxic phenotypes in a lower proportion of cases. A comprehensive review of the literature indicates that KIF1A screening should be implemented in HSP regardless of its mode of inheritance or presentations as well as in other complex neurodegenerative or neurodevelopmental disorders showing congenital or early onset ataxia.


Assuntos
Cinesinas/genética , Doenças Neurodegenerativas/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Idoso , Ataxia/congênito , Ataxia/genética , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estudos Retrospectivos , Adulto Jovem
19.
Redox Biol ; 38: 101791, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197769

RESUMO

Ferroptosis is an iron-dependent cell death caused by impaired glutathione metabolism, lipid peroxidation and mitochondrial failure. Emerging evidences report a role for ferroptosis in Friedreich's Ataxia (FRDA), a neurodegenerative disease caused by the decreased expression of the mitochondrial protein frataxin. Nrf2 signalling is implicated in many molecular aspects of ferroptosis, by upstream regulating glutathione homeostasis, mitochondrial function and lipid metabolism. As Nrf2 is down-regulated in FRDA, targeting Nrf2-mediated ferroptosis in FRDA may be an attractive option to counteract neurodegeneration in such disease, thus paving the way to new therapeutic opportunities. In this study, we evaluated ferroptosis hallmarks in frataxin-silenced mouse myoblasts, in hearts of a frataxin Knockin/Knockout (KIKO) mouse model, in skin fibroblasts and blood of patients, particularly focusing on ferroptosis-driven gene expression, mitochondrial impairment and lipid peroxidation. The efficacy of Nrf2 inducers to neutralize ferroptosis has been also evaluated.


Assuntos
Ferroptose , Ataxia de Friedreich , Doenças Neurodegenerativas , Animais , Ataxia de Friedreich/genética , Humanos , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética
20.
Parkinsonism Relat Disord ; 79: 100-104, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32911246

RESUMO

ADAR1 variants are associated to rare and heterogenous neurological conditions, including Aicardi-Goutières syndrome type 6, bilateral striatal necrosis, and dyschromatosis symmetrica hereditaria. Movement disorders (MDs) commonly occur in ADAR1-related diseases although a complete overview on the phenomenology has not been provided yet. Here, a cohort of 57 patients with ADAR1-related diseases, including 3 unpublished patients and 54 previously reported cases, was reviewed. Data on demographics, clinical features of MDs, genetics and biomarkers were collected and descriptive statistics, group analysis for genotype and logistic regression were run. Manifestations of MD characterized the onset of ADAR1-related disease in 60% of patients. Specifically, dystonia occurred in 39% of cases, even as severe status dystonicus, while prevalence of other MDs was lower. Patients often presented brain lesions (>90%) and progressive disease course (43%), fatal in some cases. Clinical presentation and outcome differed among patients with distinct genotype. This review shows that phenomenology of MDs in ADAR1-related diseases is wide and heterogeneous, although a severe motor syndrome (often characterized by dystonia) secondary to brain lesions represents the most common manifestation. Waiting for future development of disease-modifying treatments, an appropriate symptomatic intervention is crucial for ADAR1 patients. Accordingly, a deeper knowledge of phenomenology is fundamental.


Assuntos
Adenosina Desaminase/genética , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/fisiopatologia , Proteínas de Ligação a RNA/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA