Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosci Rep ; 41(3)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33629708

RESUMO

Tau is a microtubule-associated protein (MAP) responsible for controlling the stabilization of microtubules in neurons. Tau function is regulated by phosphorylation. However, in some neurological diseases Tau becomes aberrantly hyperphosphorylated, which contributes to the pathogenesis of neurological diseases, known as tauopathies. Western blotting (WB) has been widely employed to determine Tau levels in neurological disease models. However, Tau quantification by WB should be interpreted with care, as this approach has been recognized as prone to produce artifactual results if not properly performed. In the present study, our goal was to evaluate the influence of a freeze-and-thaw cycle, a common procedure preceding WB, to the integrity of Tau in brain homogenates from rats, 3xTg-AD mice and human samples. Homogenates were prepared in ice-cold RIPA buffer supplemented with protease/phosphatase inhibitors. Immediately after centrifugation, an aliquot of the extracts was analyzed via WB to quantify total and phosphorylated Tau levels. The remaining aliquots of the same extracts were stored for at least 2 weeks at either -20 or -80°C and then subjected to WB. Extracts from rodent brains submitted to freeze-and-thaw presented a ∼25 kDa fragment immunoreactive to anti-Tau antibodies. An in-gel digestion followed by mass spectrometry (MS) analysis in excised bands revealed this ∼25 kDa species corresponds to a Tau fragment. Freeze-and-thaw-induced Tau proteolysis was detected even when extracts were stored at -80°C. This phenomenon was not observed in human samples at any storage condition tested. Based on these findings, we strongly recommend the use of fresh extracts of brain samples in molecular analysis of Tau levels in rodents.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Criopreservação/métodos , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Humanos , Imuno-Histoquímica/métodos , Proteólise , Ratos , Ratos Wistar , Proteínas tau/toxicidade
2.
Biomed J ; 44(6): 709-716, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35166209

RESUMO

BACKGROUND: The repair of burns in diabetic patients is a clinical problem. It is relevant to study alternative therapies that can improve the healing process. Our aim was to investigate the effects of Solidago chilensis associated or not with laser on burns in diabetic rats. METHODS: The animals were divided in four groups (n = 30): C- without treatment; S- S. chilensis extract; L-laser irradiated; LS- laser and S. chilensis. In 7, 14 and 21 days samples were collected after the injury to structural, morphometric and molecular analysis. RESULTS: Our results demonstrate the association of S. chilensis and laser reduced the inflammatory infiltrate and favored the angiogenesis. In the groups treated only with laser or with the plant extract showed higher levels of VEGF. The low-level laser therapy (LLLT) promoted higher collagen I and reduction of collagen III. It was also observed higher MMP-2 activation and a decreasing of the active isoform of MMP-9 in the S, L and LS groups. CONCLUSIONS: The treatments improved the repair of burns in diabetic rats, since it reduced the inflammatory infiltrate and favored the collagen organization presenting similar effects in the burn repair of the diabetics.


Assuntos
Queimaduras , Diabetes Mellitus Experimental , Solidago , Animais , Queimaduras/terapia , Humanos , Lasers , Ratos , Ratos Wistar , Solidago/química , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA