Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206529

RESUMO

Urease is an enzyme that plays a significant role in the hydrolysis of urea into carbonic acid and ammonia via the carbamic acid formation. The resultant increase in pH leads to the onset of various pathologies such as gastric cancer, urolithiasis, hepatic coma, hepatic encephalopathy, duodenal ulcers and peptic ulcers. Urease inhibitors can reduce the urea hydrolysis rate and development of various diseases. The Cinnamomum genus is used in a large number of traditional medicines. It is well established that stem bark of Cinnamomum cassia exhibits antiulcerogenic potential. The present study evaluated the inhibitory effect of seven extracts of Cinnamomum camphora, Cinnamomum verum and two pure compounds Camphene and Cuminaldehyde on urease enzyme. Kinetic studies of potential inhibitors were carried out. Methanol extract (IC50 980 µg/mL) of C. camphora and a monoterpene Camphene (IC50 0.147 µg/mL) possess significant inhibitory activity. The Lineweaver Burk plot analysis suggested the competitive inhibition by methanol extract, hexane fraction and Camphene. The Gas Chromatography-Mass Spectroscopy (GC-MS) analysis of hexane fraction revealed the contribution of various terpenes. The present study targets terpenes as a new class of inhibitors that have potential therapeutic value for further development as novel drugs.


Assuntos
Proteínas de Bactérias , Cinnamomum/química , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Urease , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Urease/antagonistas & inibidores , Urease/química
2.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071722

RESUMO

Obesity is a serious health complication in almost every corner of the world. Excessive weight gain results in the onset of several other health issues such as type II diabetes, cancer, respiratory diseases, musculoskeletal disorders (especially osteoarthritis), and cardiovascular diseases. As allopathic medications and derived pharmaceuticals are partially successful in overcoming this health complication, there is an incessant need to develop new alternative anti-obesity strategies with long term efficacy and less side effects. Plants harbor secondary metabolites such as phenolics, flavonoids, terpenoids and other specific compounds that have been shown to have effective anti-obesity properties. Nanoencapsulation of these secondary metabolites enhances the anti-obesity efficacy of these natural compounds due to their speculated property of target specificity and enhanced efficiency. These nanoencapsulated and naive secondary metabolites show anti-obesity properties mainly by inhibiting the lipid and carbohydrate metabolizing enzymes, suppression of adipogenesis and appetite, and enhancing energy metabolism. This review focuses on the plants and their secondary metabolites, along with their nanoencapsulation, that have anti-obesity effects, with their possible acting mechanisms, for better human health.


Assuntos
Produtos Biológicos/química , Química Verde , Nanomedicina/métodos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Adipócitos/citologia , Adipogenia , Animais , Fármacos Antiobesidade/química , Diferenciação Celular , Flavonoides/química , Humanos , Camundongos , Nanopartículas/química , Fenol/química , Extratos Vegetais/química , Poliésteres/química , Polietilenoglicóis/química , Polifenóis/química , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA