Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Methods Mol Biol ; 2773: 59-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236536

RESUMO

To study the effect of the immunologically unimpaired microenvironment on tumor progression as well as the efficacy of therapies requiring a functioning immune system, xenograft models are not suitable due to the use of immunodeficient mice. With orthotopic congenic transplantation of tumor cells into mammary tissue, we gain more control and reproducibility regarding tumor growth, while retaining a functioning immune response. Here, we provide a protocol for isolating primary tumor cells from the MMTV-PyMT mouse model and their use in developing an orthotopic mouse model of breast cancer.


Assuntos
Neoplasias da Mama , Transplantes , Humanos , Animais , Camundongos , Feminino , Reprodutibilidade dos Testes , Modelos Animais de Doenças , Transplante Autólogo , Microambiente Tumoral
2.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958596

RESUMO

Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.


Assuntos
Cisteína Proteases , Neoplasias , Doenças Neurodegenerativas , Humanos , Cisteína/metabolismo , Catepsina B , Lisossomos/metabolismo
3.
Pharmaceutics ; 15(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37896224

RESUMO

Cathepsin D is an aspartic protease and one of the most abundant proteases. It is overexpressed in many cancers and plays an important role in tumor development, progression, and metastasis. While it is a physiologically intracellular protein, cathepsin D is secreted into the extracellular matrix under pathological conditions, making it an appealing target for drug delivery systems. Here, we present the development and evaluation of a new delivery system for tumor targeting based on immunoliposomes functionalized with pepstatin A-a natural peptide inhibitor of cathepsin D. A lipid tail was added to pepstatin A, enabling its incorporation into the liposomal lipid bilayer. The successful targeting of cathepsin D was confirmed using recombinant cathepsin D and in tumor cell lines, showing the feasibility of this targeting approach and its potential for in vivo use in theragnostic applications.

4.
Cancer Res ; 82(22): 4288-4298, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36112781

RESUMO

T cell-engaging bispecific antibodies (TCB) are highly potent therapeutics that can recruit and activate cytotoxic T cells to stimulate an antitumor immune response. However, the development of TCBs against solid tumors has been limited by significant on-target toxicity to normal tissues. Probody therapeutics have been developed as a novel class of recombinant, protease-activated antibody prodrugs that are "masked" to reduce antigen binding in healthy tissues but can become conditionally unmasked by proteases that are preferentially active in the tumor microenvironment (TME). Here, we describe the preclinical efficacy and safety of CI107, a Probody TCB targeting EGFR and CD3. In vitro, the protease-activated, unmasked CI107 effectively bound EGFR and CD3 expressed on the surface of cells and induced T-cell activation, cytokine release, and cytotoxicity toward tumor cells. In contrast, dually masked CI107 displayed a >500-fold reduction in antigen binding and >15,000-fold reduction in cytotoxic activity. In vivo, CI107 potently induced dose-dependent tumor regression of established colon cancer xenografts in mice engrafted with human peripheral blood mononuclear cells. Furthermore, the MTD of CI107 in cynomolgus monkeys was more than 60-fold higher than that of the unmasked TCB, and much lower levels of toxicity were observed in animals receiving CI107. Therefore, by localizing activity to the TME and thus limiting toxicity to normal tissues, this Probody TCB demonstrates the potential to expand clinical opportunities for TCBs as effective anticancer therapies for solid tumor indications. SIGNIFICANCE: A conditionally active EGFR-CD3 T cell-engaging Probody therapeutic expands the safety window of bispecific antibodies while maintaining efficacy in preclinical solid tumor settings.


Assuntos
Anticorpos Biespecíficos , Complexo CD3 , Neoplasias do Colo , Receptores ErbB , Animais , Humanos , Camundongos , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/antagonistas & inibidores , Neoplasias do Colo/terapia , Receptores ErbB/antagonistas & inibidores , Leucócitos Mononucleares/metabolismo , Peptídeo Hidrolases/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancers (Basel) ; 14(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36011020

RESUMO

Nano-dimensional materials have become a focus of multiple clinical applications due to their unique physicochemical properties. Magnetic nanoparticles represent an important class of nanomaterials that are widely studied for use as magnetic resonance (MR) contrast and drug delivery agents, especially as they can be detected and manipulated remotely. Using magnetic cobalt ferrite spinel (MCFS) nanoparticles, this study was aimed at developing a multifunctional drug delivery platform with MRI capability for use in cancer treatment. We found that MCFS nanoparticles demonstrated outstanding properties for contrast MRI (r1 = 22.1 s-1mM-1 and r2 = 499 s-1mM-1) that enabled high-resolution T1- and T2-weighted MRI-based signal detection. Furthermore, MCFS nanoparticles were used for the development of a multifunctional targeted drug delivery platform for cancer treatment that is concurrently empowered with the MR contrast properties. Their therapeutic effect in systemic chemotherapy and unique MRI double-contrast properties were confirmed in vivo using a breast cancer mouse tumor model. Our study thus provides an empirical basis for the development of a novel multimodal composite drug delivery system for anticancer therapy combined with noninvasive MRI capability.

6.
Mol Cancer Ther ; 21(8): 1326-1336, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35666803

RESUMO

Probody therapeutics (Pb-Txs) are conditionally activated antibody-drug conjugates (ADCs) designed to remain inactive until proteolytically activated in the tumor microenvironment, enabling safer targeting of antigens expressed in both tumor and normal tissue. Previous attempts to target CD71, a highly expressed tumor antigen, have failed to establish an acceptable therapeutic window due to widespread normal tissue expression. This study evaluated whether a probody-drug conjugate targeting CD71 can demonstrate a favorable efficacy and tolerability profile in preclinical studies for the treatment of cancer. CX-2029, a Pb-Tx conjugated to maleimido-caproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E, was developed as a novel cancer therapeutic targeting CD71. Preclinical studies were performed to evaluate the efficacy and safety of this anti-CD71 PDC in patient-derived xenograft (PDX) mouse models and cynomolgus monkeys, respectively. CD71 expression was detected at high levels by IHC across a broad range of tumor and normal tissues. In vitro, the masked Pb-Tx form of the anti-CD71 PDC displayed a >50-fold reduced affinity for binding to CD71 on cells compared with protease-activated, unmasked anti-CD71 PDC. Potent in vivo tumor growth inhibition (stasis or regression) was observed in >80% of PDX models (28/34) at 3 or 6 mg/kg. Anti-CD71 PDC remained mostly masked (>80%) in circulation throughout dosing in cynomolgus monkeys at 2, 6, and 12 mg/kg and displayed a 10-fold improvement in tolerability compared with an anti-CD71 ADC, which was lethal. Preclinically, anti-CD71 PDC exhibits a highly efficacious and acceptable safety profile that demonstrates the utility of the Pb-Tx platform to target CD71, an otherwise undruggable target. These data support further clinical development of the anti-CD71 PDC CX-2029 as a novel cancer therapeutic.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Chumbo , Macaca fascicularis/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nanomaterials (Basel) ; 12(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214977

RESUMO

The increasing growth in the development of various novel nanomaterials and their biomedical applications has drawn increasing attention to their biological safety and potential health impact. The most commonly used methods for nanomaterial toxicity assessment are based on laboratory experiments. In recent years, with the aid of computer modeling and data science, several in silico methods for the cytotoxicity prediction of nanomaterials have been developed. An affordable, cost-effective numerical modeling approach thus can reduce the need for in vitro and in vivo testing and predict the properties of designed or developed nanomaterials. We propose here a new in silico method for rapid cytotoxicity assessment of two-dimensional nanomaterials of arbitrary chemical composition by using free energy analysis and molecular dynamics simulations, which can be expressed by a computational indicator of nanotoxicity (CIN2D). We applied this approach to five well-known two-dimensional nanomaterials promising for biomedical applications: graphene, graphene oxide, layered double hydroxide, aloohene, and hexagonal boron nitride nanosheets. The results corroborate the available laboratory biosafety data for these nanomaterials, supporting the applicability of the developed method for predictive nanotoxicity assessment of two-dimensional nanomaterials.

8.
Clin Cancer Res ; 28(10): 2020-2029, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35165101

RESUMO

PURPOSE: Praluzatamab ravtansine (CX-2009) is a conditionally activated Probody drug conjugate (PDC) comprising an anti-CD166 mAb conjugated to DM4, with a protease-cleavable linker and a peptide mask that limits target engagement in normal tissue and circulation. The tumor microenvironment is enriched for proteases capable of cleaving the linker, thereby releasing the mask, allowing for localized binding of CX-2009 to CD166. CX-2009 was evaluated in a phase I/II clinical trial for patients with advanced solid tumors. PATIENTS AND METHODS: Eligible patients had metastatic cancer receiving ≥2 prior treatments. CX-2009 was administered at escalating doses every 3 weeks (0.25-10 mg/kg) or every 2 weeks (4-6 mg/kg). Primary objective was to determine the safety profile and recommended phase II dose (RP2D). RESULTS: Of 99 patients enrolled, the most prevalent subtype was breast cancer (n = 45). Median number of prior therapies was 5 (range, 1-19). Dose-limiting toxicities were observed at 8 mg/kg every 3 weeks and 6 mg/kg every 2 weeks. On the basis of tolerability, the RP2D was 7 mg/kg every 3 weeks. Tumor regressions were observed at doses ≥4 mg/kg. In the hormone receptor-positive/HER2-nonamplified breast cancer subset (n = 22), 2 patients (9%) had confirmed partial responses, and 10 patients (45%) had stable disease. Imaging with zirconium-labeled CX-2009 confirmed uptake in tumor lesions and shielding of major organs. Activated, unmasked CX-2009 was measurable in 18 of 22 posttreatment biopsies. CONCLUSIONS: CD166 is a novel, ubiquitously expressed target. CX-2009 is the first conditionally activated antibody-drug conjugate to CD166 to demonstrate both translational and clinical activity in a variety of tumor types.


Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Maitansina , Neoplasias , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Imunoconjugados/efeitos adversos , Maitansina/uso terapêutico , Neoplasias/patologia , Microambiente Tumoral
9.
Cancer Immunol Res ; 9(12): 1451-1464, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635485

RESUMO

Immune-checkpoint blockade has revolutionized cancer treatment. However, most patients do not respond to single-agent therapy. Combining checkpoint inhibitors with other immune-stimulating agents increases both efficacy and toxicity due to systemic T-cell activation. Protease-activatable antibody prodrugs, known as Probody therapeutics (Pb-Tx), localize antibody activity by attenuating capacity to bind antigen until protease activation in the tumor microenvironment. Herein, we show that systemic administration of anti-programmed cell death ligand 1 (anti-PD-L1) and anti-programmed cell death protein 1 (anti-PD-1) Pb-Tx to tumor-bearing mice elicited antitumor activity similar to that of traditional PD-1/PD-L1-targeted antibodies. Pb-Tx exhibited reduced systemic activity and an improved nonclinical safety profile, with markedly reduced target occupancy on peripheral T cells and reduced incidence of early-onset autoimmune diabetes in nonobese diabetic mice. Our results confirm that localized PD-1/PD-L1 inhibition by Pb-Tx can elicit robust antitumor immunity and minimize systemic immune-mediated toxicity. These data provide further preclinical rationale to support the ongoing development of the anti-PD-L1 Pb-Tx CX-072, which is currently in clinical trials.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/uso terapêutico , Imunoterapia/métodos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Microambiente Tumoral
10.
Pharmaceutics ; 13(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34575469

RESUMO

Proteases are involved in the control of numerous physiological processes, and their dysregulation has been identified in a wide range of pathologies, including cancer. Protease activity is normally tightly regulated post-translationally and therefore cannot be accurately estimated based on mRNA or protein expression alone. While several types of zymography approaches to estimate protease activity exist, there remains a need for a robust and reliable technique to measure protease activity in biological tissues. We present a novel quantitative ex vivo zymography (QZ) technology based on Probody® therapeutics (Pb-Tx), a novel class of protease-activated cancer therapeutics that contain a substrate linker cleavable by tumor-associated proteases. This approach enables the measurement and comparison of protease activity in biological tissues via the detection of Pb-Tx activation. By exploiting substrate specificity and selectivity, cataloguing and differentiating protease activities is possible, with further refinement achieved using protease-specific inhibitors. Using the QZ assay and human tumor xenografts, patient tumor tissues, and patient plasma, we characterized protease activity in preclinical and clinical samples. The QZ assay offers the potential to increase our understanding of protease activity in tissues and inform diagnostic and therapeutic development for diseases, such as cancer, that are characterized by dysregulated proteolysis.

11.
Clin Cancer Res ; 27(19): 5325-5333, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34253583

RESUMO

PURPOSE: CX-072, a PD-L1-targeting Probody therapeutic, is engineered to be activated by tumor proteases that remove a masking peptide. To study effects on biodistribution and pharmacokinetics, we performed 89Zr-CX-072 positron emission tomography (PET) imaging. EXPERIMENTAL DESIGN: Patients received ∼1 mg, 37 MBq 89Zr-CX-072 plus 0, 4, or 9 mg unlabeled CX-072 and PET scans at days 2, 4, and 7. After that, treatment comprised 10 mg/kg CX-072 q2 weeks (n = 7) + 3 mg/kg ipilimumab q3w 4× (n = 1). Normal organ tracer uptake was expressed as standardized uptake value (SUV)mean and tumor uptake as SUVmax. PD-L1 expression was measured immunohistochemically in archival tumor tissue. RESULTS: Three of the eight patients included received 10-mg protein dose resulting in a blood pool mean SUVmean ± SD of 4.27 ± 0.45 on day 4, indicating sufficient available tracer. Tumor uptake was highest at day 7, with a geometric mean SUVmax 5.89 (n = 113) and present in all patients. The median follow-up was 12 weeks (4-76+). One patient experienced stable disease and two patients a partial response. PD-L1 tumor expression was 90% in one patient and ≤1% in the other patients. Mean SUVmean ± SD day 4 at 10 mg in the spleen was 8.56 ± 1.04, bone marrow 2.21 ± 0.46, and liver 4.97 ± 0.97. Four patients out of seven showed uptake in normal lymph nodes and Waldeyer's ring. The tracer was intact in the serum or plasma. CONCLUSIONS: 89Zr-CX-072 showed tumor uptake, even in lesions with ≤1% PD-L1 expression, and modest uptake in normal lymphoid organs, with no unexpected uptake in other healthy tissues.


Assuntos
Neoplasias , Radioisótopos , Antígeno B7-H1/metabolismo , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/uso terapêutico , Distribuição Tecidual , Zircônio
12.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34172583

RESUMO

Costimulation via CD137 (4-1BB) enhances antitumor immunity mediated by cytotoxic T lymphocytes. Anti-CD137 agonist antibodies elicit mild liver inflammation in mice, and the maximum tolerated dose of Urelumab, an anti-human CD137 agonist monoclonal antibody, in the clinic was defined by liver inflammation-related side effects. A protease-activated prodrug form of the anti-mouse CD137 agonist antibody 1D8 (1D8 Probody therapeutic, Pb-Tx) was constructed and found to be selectively activated in the tumor microenvironment. This construct, which encompasses a protease-cleavable linker holding in place a peptide that masks the antigen binding site, exerted antitumor effects comparable to the unmodified antibody but did not result in liver inflammation. Moreover, it efficaciously synergized with both PD-1 blockade and adoptive T-cell therapy. Surprisingly, minimal active Pb-Tx reached tumor-draining lymph nodes, and regional lymphadenectomy did not abrogate antitumor efficacy. By contrast, S1P receptor-dependent recirculation of T cells was absolutely required for efficacy. The preferential cleavage of the anti-CD137 Pb-Tx by tumor proteases offers multiple therapeutic opportunities, including neoadjuvant therapy, as shown by experiments in which the Pb-Tx is given prior to surgery to avoid spontaneous metastases.


Assuntos
Antineoplásicos/toxicidade , Antineoplásicos/uso terapêutico , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Inflamação/patologia , Fígado/patologia , Neoplasias Pulmonares/secundário , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Camundongos , Terapia Neoadjuvante , Peptídeo Hidrolases/metabolismo
13.
Methods Mol Biol ; 2294: 275-293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33742409

RESUMO

It is becoming increasingly evident that progression and metastasis of solid cancers is driven by the interaction of oncogene-transformed cancer cells and non-malignant host cells in the tumor stroma. In this process, the immune system contributes a complex set of highly important pro- and antitumor effects, which are not readily recapitulated by commonly used xenograft cancer models in immunodeficient mice.Therefore, we provide protocols for isolation of primary tumor cells from the MMTV-PymT mouse model for metastasizing breast cancer and their resubmission to congenic immunocompetent mice by orthotopic transplantation into the mammary gland or different routes of injection to induce organ-specific experimental metastasis, including intravenous, intracardiac, and caudal artery injection of tumor cells. Moreover, we describe protocols for sensitive detection and quantification of the metastatic burden.


Assuntos
Adenocarcinoma/patologia , Neoplasias Encefálicas/secundário , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Peptídeo Hidrolases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Adenocarcinoma/enzimologia , Animais , Feminino , Neoplasias Mamárias Experimentais/enzimologia , Camundongos , Transgenes , Células Tumorais Cultivadas
14.
Theranostics ; 10(13): 5815-5828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483421

RESUMO

Probody® therapeutics are recombinant masked monoclonal antibody (mAb) prodrugs that become activated by proteases present in the tumor microenvironment. This makes them attractive for use as Probody drug conjugates (PDCs). CX-2009 is a novel PDC with the toxic drug DM4 coupled to an anti-CD166 Probody therapeutic. CD166 is overexpressed in multiple tumor types and to a lesser extent by healthy tissue. Methods: The tumor targeting potential of CX-2009 was assessed by performing 89Zr-immuno-PET/biodistribution/therapy studies in a CD166-positive H292 lung cancer mouse model. Head-to-head comparisons of CX-2009 with the Probody therapeutic without DM4 (CX-191), the unmasked antibody drug conjugate (ADC) CX-1031, and the parental mAb CX-090 were performed. All constructs were 89Zr labeled in a GMP compliant way, administered at 10, 110, or 510 µg, and ex vivo biodistribution was assessed at 24, 72, and 168 hours post-injection. Results: Comparable biodistribution was observed for all constructs, confirmed with PET/CT. Tumors showed the highest uptake: 21.8 ± 2.3 ([89Zr]Zr-CX-2009), 21.8 ± 5.0 ([89Zr]Zr­CX-191), 18.7 ± 2.5 ([89Zr]Zr-CX-1031) and 20.8 ± 0.9 %ID/g ([89Zr]Zr-CX-090) at 110 µg injected. Increasing the dose to 510 µg resulted in lower tumor uptake and higher blood levels for all constructs, suggesting receptor saturation. In addition, CX-2009 and CX-1031 showed similar therapeutic potential. Conclusions: CX-2009 is optimally capable of targeting CD166-expressing tumors when compared with its derivatives, implying that enzymatic activation inside the tumor, required to allow CD166 binding, does not limit tumor targeting. Because CX-2009 does not bind to mouse CD166, however, reduced targeting of healthy organs should be confirmed in ongoing clinical 89Zr-immuno-PET studies.


Assuntos
Molécula de Adesão de Leucócito Ativado/imunologia , Maitansina/farmacologia , Pró-Fármacos/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Imunoconjugados/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Distribuição Tecidual/efeitos dos fármacos , Zircônio/química , Zircônio/farmacologia
15.
Sci Rep ; 10(1): 5894, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246002

RESUMO

Proteases have been implicated in the development of many pathological conditions, including cancer. Detection of protease activity in diseased tissues could therefore be useful for diagnosis, prognosis, and the development of novel therapeutic approaches. Due to tight post-translational regulation, determination of the expression level of proteases alone may not be indicative of protease activities, and new methods for measuring protease activity in biological samples such as tumor biopsies are needed. Here we report a novel zymography-based technique, called the IHZTM assay, for the detection of specific protease activities in situ. The IHZ assay involves imaging the binding of a protease-activated monoclonal antibody prodrug, called a Probody® therapeutic, to tissue. Probody therapeutics are fully recombinant, masked antibodies that can only bind target antigen after removal of the mask by a selected protease. A fluorescently labeled Probody molecule is incubated with a biological tissue, thereby enabling its activation by tissue endogenous proteases. Protease activity is measured by imaging the activated Probody molecule binding to antigen present in the sample. The method was evaluated in xenograft tumor samples using protease specific substrates and inhibitors, and the measurements correlated with efficacy of the respective Probody therapeutics. Using this technique, a diverse profile of MMP and serine protease activities was characterized in breast cancer patient tumor samples. The IHZ assay represents a new type of in situ zymography technique that can be used for the screening of disease-associated proteases in patient samples from multiple pathological conditions.


Assuntos
Imagem Molecular/métodos , Sondas Moleculares/metabolismo , Neoplasias/diagnóstico , Peptídeo Hidrolases/análise , Pró-Fármacos/metabolismo , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Microscopia de Fluorescência , Sondas Moleculares/genética , Sondas Moleculares/farmacologia , Neoplasias/patologia , Peptídeo Hidrolases/metabolismo , Pró-Fármacos/farmacologia , Processamento de Proteína Pós-Traducional , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Clin Cancer Res ; 26(15): 3999-4009, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31953313

RESUMO

PURPOSE: Probody therapeutic CX-072 is a protease-activatable antibody that is cross-reactive with murine and human programmed death-ligand 1 (PD-L1). CX-072 can be activated in vivo by proteases present in the tumor microenvironment, thereby potentially reducing peripheral, anti-PD-L1-mediated toxicities. To study its targeting of PD-L1-expressing tissues, we radiolabeled CX-072 with the PET isotope zirconium-89 (89Zr). EXPERIMENTAL DESIGN: 89Zr-labeled CX-072, nonspecific Probody control molecule (PbCtrl) and CX-072 parental antibody (CX-075) were injected in BALB/c nude mice bearing human MDA-MB-231 tumors or C57BL/6J mice bearing syngeneic MC38 tumors. Mice underwent serial PET imaging 1, 3, and 6 days after intravenous injection (pi), followed by ex vivo biodistribution. Intratumoral 89Zr-CX-072 distribution was studied by autoradiography on tumor tissue sections, which were subsequently stained for PD-L1 by IHC. Activated CX-072 species in tissue lysates were detected by Western capillary electrophoresis. RESULTS: PET imaging revealed 89Zr-CX-072 accumulation in MDA-MB-231 tumors with 2.1-fold higher tumor-to-blood ratios at 6 days pi compared with 89Zr-PbCtrl. Tumor tissue autoradiography showed high 89Zr-CX-072 uptake in high PD-L1-expressing regions. Activated CX-072 species were detected in these tumors, with 5.3-fold lower levels found in the spleen. Furthermore, 89Zr-CX-072 uptake by lymphoid tissues of immune-competent mice bearing MC38 tumors was low compared with 89Zr-CX-075, which lacks the Probody design. CONCLUSIONS: 89Zr-CX-072 accumulates specifically in PD-L1-expressing tumors with limited uptake in murine peripheral lymphoid tissues. Our data may enable clinical evaluation of 89Zr-CX-072 whole-body distribution as a tool to support CX-072 drug development (NCT03013491).


Assuntos
Anticorpos Monoclonais/farmacocinética , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacocinética , Neoplasias/tratamento farmacológico , Compostos Radiofarmacêuticos/farmacocinética , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Autorradiografia , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/química , Masculino , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/imunologia , Neoplasias/patologia , Tomografia por Emissão de Pósitrons , Radioisótopos/administração & dosagem , Radioisótopos/química , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio/administração & dosagem , Zircônio/química , Zircônio/farmacocinética
17.
Biochimie ; 166: 94-102, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31163196

RESUMO

Proteolytic activity in the tumor microenvironment is one of the key elements supporting tumor development and metastasis. One of the key families of proteases that are overexpressed in various types of cancer and implicated in different stages of tumor progression are cysteine cathepsins. Among them, cathepsins S and L can be secreted into the tumor microenvironment by tumor and/or immune cells, making them promising drug delivery targets. Here we present a new system for cathepsin S/L targeting using a liposomal drug carrier system functionalized with the endogenous cysteine cathepsin inhibitor, stefin A. The selective targeting of cathepsins by stefin A-conjugated liposomes was confirmed in vitro and in vivo, demonstrating the potential of this approach for cancer diagnosis and treatment.


Assuntos
Catepsina L/antagonistas & inibidores , Catepsinas/antagonistas & inibidores , Cistatina A/administração & dosagem , Inibidores de Cisteína Proteinase/administração & dosagem , Portadores de Fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Animais , Biomarcadores Tumorais/metabolismo , Catepsina L/química , Catepsina L/genética , Catepsinas/química , Catepsinas/genética , Clonagem Molecular , Cistatina A/química , Cistatina A/farmacologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Escherichia coli/genética , Feminino , Humanos , Lipossomos , Camundongos , Camundongos Congênicos , Pichia/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
18.
Biol Chem ; 400(8): 965-977, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30913028

RESUMO

The role of proteases in cancer was originally thought to be limited to the breakdown of basement membranes and extracellular matrix (ECM), thereby promoting cancer cell invasion into surrounding normal tissues. It is now well understood that proteases play a much more complicated role in all stages of cancer progression and that not only tumor cells, but also stromal cells are an important source of proteases in the tumor microenvironment. Among all the proteolytic enzymes potentially associated with cancer, some proteases have taken on heightened importance due to their significant up-regulation and ability to participate at multiple stages of cancer progression and metastasis. In this review, we discuss some of the advances in understanding of the roles of several key proteases from different classes in the development and progression of cancer and the potential to leverage their upregulated activity for the development of novel targeted treatment strategies.

19.
Nano Lett ; 18(9): 5401-5410, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30070485

RESUMO

Owing to their unique physicochemical properties, nanomaterials have become a focus of multidisciplinary research efforts including investigations of their interactions with tumor cells and stromal compartment of tumor microenvironment (TME) toward the development of next-generation anticancer therapies. Here, we report that agglomerates of radially assembled Al hydroxide crumpled nanosheets exhibit anticancer activity due to their selective adsorption properties and positive charge. This effect was demonstrated in vitro by decreased proliferation and viability of tumor cells, and further confirmed in two murine cancer models. Moreover, Al hydroxide nanosheets almost completely inhibited the growth of murine melanoma in vivo in combination with a minimally effective dose of doxorubicin. Our direct molecular dynamics simulation demonstrated that Al hydroxide nanosheets can cause significant ion imbalance in the living cell perimembranous space through the selective adsorption of extracellular anionic species. This approach to TME dysregulation could lay the foundation for development of novel anticancer therapy strategies.


Assuntos
Hidróxido de Alumínio/farmacologia , Proliferação de Células/efeitos dos fármacos , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Hidróxido de Alumínio/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Células MCF-7 , Camundongos , Simulação de Dinâmica Molecular , Nanoconchas/química , Microambiente Tumoral/efeitos dos fármacos
20.
Oncotarget ; 8(43): 73793-73809, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088746

RESUMO

Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro, indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-ß pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA