Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Public Health ; 10: 840996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444987

RESUMO

The aim of the present study is to assess saliva as a reliable specimen for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection by real-time reverse transcription-PCR (RT-PCR), especially in community mass screening programs. The performance analysis considered 1,221 total samples [nasopharyngeal (NP) swabs and corresponding saliva], tested by means of a reference diagnostic real-time RT-PCR assay. Conflicting results were further investigated with a second, more sensitive, reference assay. Analysis of agreement showed a good concordance (95.82%), with a k coefficient value of.74 (p < 0.001); moreover, a follow-up analysis revealed the presence of viral gene targets in saliva samples at the time point the corresponding NP swabs turned negative. Data obtained prove the reliability of this alternative biofluid for SARS-CoV-2 detection in real-time RT-PCR. Considering the role of saliva in the coronavirus disease 2019 (COVID-19) transmission and pathogenesis, and the advantages in the use of salivary diagnostics, the present validation supports the use of saliva as an optimal choice in large-scale population screening and monitoring of the SARS-CoV-2 virus.


Assuntos
COVID-19 , COVID-19/diagnóstico , Humanos , Nasofaringe , Reprodutibilidade dos Testes , SARS-CoV-2 , Saliva , Manejo de Espécimes/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-35055765

RESUMO

Bivalve shellfish are readily contaminated by human pathogens present in waters impacted by municipal sewage, and the detection of SARS-CoV-2 in feces of infected patients and in wastewater has drawn attention to the possible presence of the virus in bivalves. The aim of this study was to collect data on SARS-CoV-2 prevalence in bivalve mollusks from harvesting areas of Campania region. A total of 179 samples were collected between September 2019 and April 2021 and were tested using droplet digital RT-PCR (dd RT-PCR) and real-time RT-PCR. Combining results obtained with different assays, SARS-CoV-2 presence was detected in 27/179 (15.1%) of samples. A median viral concentration of 1.1 × 102 and 1.4 × 102 g.c./g was obtained using either Orf1b nsp14 or RdRp/gene E, respectively. Positive results were unevenly distributed among harvesting areas and over time, positive samples being more frequent after January 2021. Partial sequencing of the spike region was achieved for five samples, one of which displaying mutations characteristic of the Alpha variant (lineage B.1.1.7). This study confirms that bivalve mollusks may bioaccumulate SARS-CoV-2 to detectable levels and that they may represent a valuable approach to track SARS-CoV-2 in water bodies and to monitor outbreak trends and viral diversity.


Assuntos
Bivalves , COVID-19 , Animais , Humanos , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Águas Residuárias
3.
J Virol Methods ; 300: 114420, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34902456

RESUMO

The emergence and spread of SARS-CoV-2 has led to a compelling request for accurate diagnostic tests. The aim of this study was assessing the performance of a real-time RT-qPCR (rt RT-qPCR) assay and of a droplet digital RT-PCR (dd RT-PCR) targeting the nsp14 genome region for the detection of SARS-CoV-2 in nasopharyngeal swabs. A total of 258 nasopharyngeal swabs were analyzed with the nsp14 assays and, for comparison, with a reference assay targeting the RdRp and E genes. Conflicting results were further investigated by two additional protocols, the Centers for Disease Control and Prevention (CDC) real-time targeting N1/N2, and a nested RT-PCR for the spike region. Agreement of results was achieved on 226 samples (156 positive and 70 negative), 8 samples were positive in the reference assay and in the nsp14 rt RT-qPCR but negative with the dd RT-PCR, and 24 samples provided different combinations of results with the three assays. Sensitivity, specificity and accuracy (95 %C.I.) of the nsp14 assays were: 100.0 % (97.4-100.0), 98.7 % (92.1-100.0), and 99.6 % (97.5-100.0) for the rt RT-qPCR; 92.4 % (87.4-95.6), 100.0 % (94.2-100.0), and 94.7 % (91.1-97.0) for the dd RT-PCR. The results of the study support the use of the nsp14 real-time RT-qPCR and ddPCR for the detection of SARS-CoV-2 in nasopharyngeal swabs.


Assuntos
COVID-19 , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , COVID-19/diagnóstico , Exonucleases , Humanos , Nasofaringe/virologia , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
4.
Future Sci OA ; 7(7): FSO711, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34254029

RESUMO

SARS-CoV-2, the causative agent of the COVID-19 pandemic, has rarely been associated with transmission from humans to animals (reverse zoonotic transmission). In this retrospective study, the authors reviewed data obtained from 236 animals, including buffaloes, goats/sheep, horses, carrier pigeons, rabbits, hens, snakes, pigs and cows that were screened for SARS-CoV-2 infection because they had been in contact with their SARS-CoV-2-positive breeder for at least 2 weeks. None of the tested animals were found to be positive. The authors' findings suggest that the risk of reverse zoonotic transmission among bred animals and SARS-CoV-2-positive breeders is very low or nonexistent. Additional studies are warranted.

5.
Front Public Health ; 9: 649781, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996728

RESUMO

The onset of the new SARS-CoV-2 coronavirus encouraged the development of new serologic tests that could be additional and complementary to real-time RT-PCR-based assays. In such a context, the study of performances of available tests is urgently needed, as their use has just been initiated for seroprevalence assessment. The aim of this study was to compare four chemiluminescence immunoassays and one immunochromatography test for SARS-Cov-2 antibodies for the evaluation of the degree of diffusion of SARS-CoV-2 infection in Salerno Province (Campania Region, Italy). A total of 3,185 specimens from citizens were tested for anti-SARS-CoV-2 antibodies as part of a screening program. Four automated immunoassays (Abbott and Liaison SARS-CoV-2 CLIA IgG and Roche and Siemens SARS-CoV-2 CLIA IgM/IgG/IgA assays) and one lateral flow immunoassay (LFIA Technogenetics IgG-IgM COVID-19) were used. Seroprevalence in the entire cohort was 2.41, 2.10, 1.82, and 1.85% according to the Liaison IgG, Abbott IgG, Siemens, and Roche total Ig tests, respectively. When we explored the agreement among the rapid tests and the serologic assays, we reported good agreement for Abbott, Siemens, and Roche (Cohen's Kappa coefficient 0.69, 0.67, and 0.67, respectively), whereas we found moderate agreement for Liaison (Cohen's kappa coefficient 0.58). Our study showed that Abbott and Liaison SARS-CoV-2 CLIA IgG, Roche and Siemens SARS-CoV-2 CLIA IgM/IgG/IgA assays, and LFIA Technogenetics IgG-IgM COVID-19 have good agreement in seroprevalence assessment. In addition, our findings indicate that the prevalence of IgG and total Ig antibodies against SARS-CoV-2 at the time of the study was as low as around 3%, likely explaining the amplitude of the current second wave.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunoensaio , Imunoglobulina M , Itália , Luminescência , Sensibilidade e Especificidade , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA