Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(24): e2121138119, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675422

RESUMO

Rechargeable Zn metal batteries (RZMBs) may provide a more sustainable and lower-cost alternative to established battery technologies in meeting energy storage applications of the future. However, the most promising electrolytes for RZMBs are generally aqueous and require high concentrations of salt(s) to bring efficiencies toward commercially viable levels and mitigate water-originated parasitic reactions including hydrogen evolution and corrosion. Electrolytes based on nonaqueous solvents are promising for avoiding these issues, but full cell performance demonstrations with solvents other than water have been very limited. To address these challenges, we investigated MeOH as an alternative electrolyte solvent. These MeOH-based electrolytes exhibited exceptional Zn reversibility over a wide temperature range, with a Coulombic efficiency > 99.5% at 50% Zn utilization without cell short-circuit behavior for > 1,800 h. More important, this remarkable performance translates well to Zn || metal-free organic cathode full cells, supporting < 6% capacity decay after > 800 cycles at -40 °C.

2.
Nat Nanotechnol ; 16(8): 902-910, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33972758

RESUMO

Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.

3.
Nat Commun ; 10(1): 3423, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366890

RESUMO

Transition-metal dissolution from cathode materials, manganese in particular, has been held responsible for severe capacity fading in lithium-ion batteries, with the deposition of the transition-metal cations on anode surface, in elemental form or as chelated-complexes, as the main contributor for such degradations. In this work we demonstrate with diverse experiments and calculations that, besides interfacial manganese species on anode, manganese(II) in bulk electrolyte also significantly destabilizes electrolyte components with its unique solvation-sheath structure, where the decompositions of carbonate molecules and hexafluorophosphate anion are catalyzed via their interactions with manganese(II). The manganese(II)-species eventually deposited on anode surface resists reduction to its elemental form because of its lower electrophilicity than carbonate molecule or anion, whose destabilization leads to sustained consumption. The reveal understanding of the once-overlooked role of manganese-dissolution in electrolytes provides fresh insight into the failure mechanism of manganese-based cathode chemistries, which serves as better guideline to electrolyte design for future batteries.

4.
J Phys Chem Lett ; 10(12): 3381-3389, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31141378

RESUMO

At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4- ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution.

5.
J Chem Phys ; 148(19): 193833, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307244

RESUMO

Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.

6.
J Chem Theory Comput ; 14(2): 768-783, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29294281

RESUMO

The range-dependent screening of the charge-charge, charge-induced dipole, and induced dipole-induced dipole interactions was examined for a variety of liquids modeled using polarizable force fields. A cutoff-based method for calculation of the electrostatic interactions in molecular dynamics (MD) is presented as an alternative to Ewald-type summation for simulations of the disordered materials modeled using many-body polarizable force fields with permanent charges and induced point dipoles. The proposed approach was tested on bulk water, room-temperature ionic liquids, and solutions of ions in polar solvents. The smooth, short-range, and atom-type independent screening functions for interactions between the charges and induced dipoles were obtained using the force matching approach. An excellent agreement for both the magnitude and directionality of forces, structural and dynamic properties, was found in MD simulations utilizing the developed screening functions, compared to those with Ewald summation. While similar in shape and range, the charge-charge screening functions were somewhat dependent on the material chemistry. On the other hand, the charge-induced dipole and induced dipole-induced dipole screening functions were found to be nearly universal for the tested materials.

7.
Acc Chem Res ; 50(12): 2886-2894, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29164857

RESUMO

Electroactive interfaces distinguish electrochemistry from chemistry and enable electrochemical energy devices like batteries, fuel cells, and electric double layer capacitors. In batteries, electrolytes should be either thermodynamically stable at the electrode interfaces or kinetically stable by forming an electronically insulating but ionically conducting interphase. In addition to a traditional optimization of electrolytes by adding cosolvents and sacrificial additives to preferentially reduce or oxidize at the electrode surfaces, knowledge of the local electrolyte composition and structure within the double layer as a function of voltage constitutes the basis of manipulating an interphase and expanding the operating windows of electrochemical devices. In this work, we focus on how the molecular-scale insight into the solvent and ion partitioning in the electrolyte double layer as a function of applied potential could predict changes in electrolyte stability and its initial oxidation and reduction reactions. In molecular dynamics (MD) simulations, highly concentrated lithium aqueous and nonaqueous electrolytes were found to exclude the solvent molecules from directly interacting with the positive electrode surface, which provides an additional mechanism for extending the electrolyte oxidation stability in addition to the well-established simple elimination of "free" solvent at high salt concentrations. We demonstrate that depending on their chemical structures, the anions could be designed to preferentially adsorb or desorb from the positive electrode with increasing electrode potential. This provides additional leverage to dictate the order of anion oxidation and to effectively select a sacrificial anion for decomposition. The opposite electrosorption behaviors of bis(trifluoromethane)sulfonimide (TFSI) and trifluoromethanesulfonate (OTF) as predicted by MD simulation in highly concentrated aqueous electrolytes were confirmed by surface enhanced infrared spectroscopy. The proton transfer (H-transfer) reactions between solvent molecules on the cathode surface coupled with solvent oxidation were found to be ubiquitous for common Li-ion electrolyte components and dependent on the local molecular environment. Quantum chemistry (QC) calculations on the representative clusters showed that the majority of solvents such as carbonates, phosphates, sulfones, and ethers have significantly lower oxidation potential when oxidation is coupled with H-transfer, while without H-transfer their oxidation potentials reside well beyond battery operating potentials. Thus, screening of the solvent oxidation limits without considering H-transfer reactions is unlikely to be relevant, except for solvents containing unsaturated functionalities (such as C═C) that oxidize without H-transfer. On the anode, the F-transfer reaction and LiF formation during anion and fluorinated solvent reduction could be enhanced or diminished depending on salt and solvent partitioning in the double layer, again giving an additional tool to manipulate the order of reductive decompositions and interphase chemistry. Combined with experimental efforts, modeling results highlight the promise of interphasial compositional control by either bringing the desired components closer to the electrode surface to facilitate redox reaction or expelling them so that they are kinetically shielded from the potential of the electrode.

8.
J Phys Chem Lett ; 8(18): 4362-4367, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28846430

RESUMO

Development of safe aqueous batteries and supercapacitors critically relies on expanding the electrolyte electrochemical stability window. A novel mechanism responsible for widening the electrochemical stability window of water-in-salt electrolytes (WiSEs) compared to conventional salt-in-water electrolytes is suggested based on molecular dynamics (MD) simulations of the electrolyte-electrode interface. Water exclusion from the interfacial layer at the positive electrode provided additional kinetic protection that delayed the onset of the oxygen evolution reactions. The interfacial structure of a WiSE at negative electrodes near the potential of zero charge clarified why the recently discovered passivation layers formed in WiSEs are robust. The onset of water accumulation at potentials below 1.5 V vs Li/Li+ leads to formation of water-rich nanodomains at the negative electrode, limiting the robustness of the WiSE. Unexpectedly, the bis(trifluoromethanesulfonyl)imide anion adsorbed and trifluoromethanesulfonate desorbed with positive electrode polarization, demonstrating selective anion partitioning in the double layer.

9.
J Phys Condens Matter ; 28(46): 464002, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27623976

RESUMO

The structural properties of electrolytes consisting of solutions of ionic liquids in a polar solvent at charged electrode surfaces are investigated using classical atomistic simulations. The studied electrolytes consisted of tetraethylammonium tetrafluoroborate (NEt4-BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate (c2mim-BF4) and 1-octyl-3-methylimidazolium tetrafluoroborate (c8mim-BF4) salts dissolved in acetonitrile solvent. We discuss the influence of electrolyte concentration, chemical structure of the ionic salt, temperature, conducting versus semiconducting nature of the electrode, electrode geometry and surface roughness on the electric double layer structure and capacitance and compare these properties with those obtained for pure room temperature ionic liquids. We show that electrolytes consisting of solutions of ions can behave quite differently from pure ionic liquid electrolytes.

10.
J Phys Chem Lett ; 7(1): 36-42, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26641287

RESUMO

Molecular simulations of the diffusion of EMIM(+) and TFSI(-) ions in slit-shaped micropores under conditions similar to those during charging show that in pores that accommodate only a single layer of ions, ions diffuse increasingly faster as the pore becomes charged (with diffusion coefficients even reaching ∼5 × 10(-9) m(2)/s), unless the pore becomes very highly charged. In pores wide enough to fit more than one layer of ions, ion diffusion is slower than in the bulk and changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore during charging is correlated most strongly with the dense (or loose) ion packing inside the pore. The molecular details of the ions and the precise width of the pores modify these trends weakly, except when the pore is so narrow that the ion conformation relaxation is strongly constrained by the pore walls.

11.
Nanotechnology ; 26(46): 464001, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26511198

RESUMO

The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL)capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 µF cm(−2) from that of a metallic surface.Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.

12.
ACS Nano ; 9(6): 5999-6017, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26038979

RESUMO

The enhancement of non-Faradaic charge and energy density stored by ionic electrolytes in nanostructured electrodes is an intriguing issue of great practical importance for energy storage in electric double layer capacitors. On the basis of extensive molecular dynamics simulations of various carbon-based nanoporous electrodes and room temperature ionic liquid (RTIL) electrolytes, we identify atomistic mechanisms and correlations between electrode/electrolyte structures that lead to capacitance enhancement. In the symmetric electrode setup with nanopores having atomically smooth walls, most RTILs showed up to 50% capacitance increase compared to infinitely wide pore. Extensive simulations using asymmetric electrodes and pores with atomically rough surfaces demonstrated that tuning of electrode nanostructure could lead to further substantial capacitance enhancement. Therefore, the capacitance in nanoporous electrodes can be increased due to a combination of two effects: (i) the screening of ionic interactions by nanopore walls upon electrolyte nanoconfinement, and (ii) the optimization of nanopore structure (volume, surface roughness) to take into account the asymmetry between cation and anion chemical structures.

13.
J Phys Chem Lett ; 6(18): 3594-609, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26722729

RESUMO

Capacitive energy storage devices are receiving increasing experimental and theoretical attention due to their enormous potential for energy applications. Current research in this field is focused on the improvement of both the energy and the power density of supercapacitors by optimizing the nanostructure of porous electrodes and the chemical structure/composition of the electrolytes. However, the understanding of the underlying correlations and the mechanisms of electric double layer formation near charged surfaces and inside nanoporous electrodes is complicated by the complex interplay of several molecular scale phenomena. This Perspective presents several aspects regarding the experimental and theoretical research in the field, discusses the current atomistic and molecular scale understanding of the mechanisms of energy and charge storage, and provides a brief outlook to the future developments and applications of these devices.

14.
Phys Chem Chem Phys ; 16(11): 5174-82, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24481408

RESUMO

In this work using molecular dynamics simulations we examine the temperature dependence of the differential capacitance of room temperature ionic liquid electrolytes near electrified surfaces. For electrodes with atomically flat surfaces our simulations show very weak temperature dependence of the differential capacitance (DC) with a slight decrease of DC with increasing temperature. For atomically corrugated surfaces where the ion dimensions are comparable to the size of the surface corrugation patterns, the influence of temperature on DC is much more pronounced. At low temperatures the DC dependence on electrode potential shows large variations with well-defined maxima and minima. However, with increasing temperature these features are significantly flattened. Also for these corrugated surfaces an abnormal positive slope of DC vs. temperature is observed in the narrow range of relatively low voltages. Analysis of changes in the electric double layer structure as a function of temperature allowed us to propose a new mechanism explaining the observed trends in capacitance as a function of temperature and surface topography. The obtained simulation results are discussed in light of available experimental data and help to discriminate between contradictory experimentally observed trends in DC temperature dependence reported for ionic liquid based electrolytes in the literature.

15.
Phys Chem Chem Phys ; 15(34): 14234-47, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23873305

RESUMO

A molecular dynamics simulation study of electric double layer (EDL) structure and differential capacitance (DC) of two 1-butyl-3-methylimidazolium (BMIM)-based room temperature ionic liquids, i.e. [BMIM][BF4] and [BMIM][PF6], has been conducted on basal and prismatic graphite as well as (001) and (011) gold electrode surfaces. The influence of the electrode surface and electrolyte structure on electrode capacitance and EDL structure are discussed. For a given electrode surface both the [BMIM][BF4] and [BMIM][PF6] electrolytes generate very similar DC and EDL structures. The DC for these ionic liquids in contact with atomically flat surfaces (i.e. basal graphite and (001)Au) shows very small variations within the electrolyte chemical stability potential window and fluctuates around an average value of ∼5 µF cm(-2). On atomically more corrugated surfaces (i.e., Au(011) and prismatic graphite) the DC shows more variation with electrode potential and depends on the correspondence between dimensions of the surface roughness and electrolyte ion sizes. The trends and dependencies obtained for DC are used to discriminate between mutually contradictory experimental data reported in the literature for related systems.

16.
J Phys Chem Lett ; 4(1): 132-40, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-26291225

RESUMO

The capacitance enhancement experimentally observed in electrodes with complex morphology of random subnanometer wide pores is an intriguing phenomena, yet the mechanisms for such enhancement are not completely understood. Our atomistic molecular dynamics simulations demonstrate that in subnanometer slit-geometry nanopores, a factor of 2 capacitance enhancement (compared to a flat electrode) is possible for the 1-ethyl-3-methylimidazolium (EMIM)-bis(trifluoro-methylsulfonyl)imide (TFSI) ionic liquid electrolyte. This capacitance enhancement is a result of a fast charge separation inside the nanopore due to abrupt expulsion of co-ions from the pore while maintaining an elevated counterion density due to strong screening of electrostatic repulsive interactions by the conductive pore. Importantly, we find that the capacitance enhancement can be very asymmetric. For the negatively charged 7.5 Å wide pore, the integral capacitance is 100% larger than on a flat surface; however, on the positive electrode, almost no enhancement is observed. Detailed analysis of structure and composition of electrolyte inside nanopores shows that the capacitance enhancement and the shape of differential capacitance strongly depend on the details of the ion chemical structure and a delicate balance of ion-surface and ion-ion interactions.

17.
J Phys Chem Lett ; 3(9): 1124-9, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-26288046

RESUMO

Electrostatic double-layer capacitors (EDLCs) with room-temperature ionic liquids (RTILs) as electrolytes are among the most promising energy storage technologies. Utilizing atomistic molecular dynamics simulations, we demonstrate that the capacitance and energy density stored within the electric double layers (EDLs) formed at the electrode-RTIL electrolyte interface can be significantly improved by tuning the nanopatterning of the electrode surface. Significantly increased values and complex dependence of differential capacitance on applied potential were observed for surface patterns having dimensions similar to the ions' dimensions. Electrode surfaces patterned with rough edges promote ion separation in the EDL at lower potentials and therefore result in increased capacitance. The observed trends, which are not accounted for by the current basic EDL theories, provide a potentially new route for optimizing electrode structure for specific electrolytes.

18.
J Phys Chem B ; 115(12): 3073-84, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21384838

RESUMO

Molecular dynamics simulations were performed on N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (pyr(13)FSI) room temperature ionic liquid (RTIL) confined between graphite electrodes as a function of applied potential at 393 and 453 K using an accurate force field developed in this work. The electric double layer (EDL) structure and differential capacitance (DC) of pyr(13)FSI was compared with the results of the previous study of a similar RTIL pyr(13)bis(trifluoromethanesulfonyl)imide (pyr(13)TFSI) with a significantly larger anion [ Vatamanu, J.; Borodin, O.; Smith, G. D. J. Am. Chem. Soc. 2010, 132, 14825]. Intriguingly, the smaller size of the FSI anion compared to TFSI did not result in a significant increase of the DC on the positive electrode. Instead, a 30% higher DC was observed on the negative electrode for pyr(13)FSI compared to pyr(13)TFSI. The larger DC observed on the negative electrode for pyr(13)FSI compared to pyr(13)TFSI was associated with two structural features of the EDL: (a) a closer approach of FSI compared to TFSI to the electrode surface and (b) a faster rate (vs potential decrease) of anion desorption from the electrode surface for FSI compared to TFSI. Additionally, the limiting behavior of DC at large applied potentials was investigated. Finally, we show that constant potential simulations indicate time scales of hundreds of picoseconds required for electrode charge/discharge and EDL formation.

19.
Phys Chem Chem Phys ; 12(45): 15065-72, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20957258

RESUMO

In this work we show that homogeneous nucleation of methane hydrate can, under appropriate conditions, be a very rapid process, achieved within tens of nanoseconds. In agreement with recent experimental results on different systems, we find that the nucleation of a gas hydrate crystal appears as a two-step process. It starts with the formation of disordered solid-like structures, which will then spontaneously evolve to more recognizable crystalline forms. This previously elusive first-stage state is confirmed to be post-critical in the nucleation process, and is characterized as processing reasonable short-range structure but essentially no long-range order. Its energy, molecular diffusion and local structure reflect a solid-like character, although it does exhibit mobility over longer (tens of ns) timescales. We provide insights into the controversial issue of memory effects in methane hydrates. We show that areas locally richer in methane will nucleate much more readily, and no 'memory' of the crystal is required for fast re-crystallization. We anticipate that much richer polycrystallinity and novel methane hydrate phases could be possible.

20.
J Am Chem Soc ; 132(42): 14825-33, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20925318

RESUMO

Molecular dynamics simulation studies of the structure and the differential capacitance (DC) for the ionic liquid (IL) N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonyl imide ([pyr(13)][TFSI]) near a graphite electrode have been performed as a function temperature and electrode potential. The IL exhibits a multilayer structure that extends 20-30 Å from the electrode surface. The composition and ion orientation in the innermost layer were found to be strongly dependent on the electrode potential. While at potentials near the potential of zero charge (PZC), both cations and anions adjacent to the surface are oriented primarily perpendicular to the surface, the counterions in first layer orient increasingly parallel to the surface with increasing electrode potential. A minimum in DC observed around -1 V(RPZC) (potential relative to the PZC) corresponds to the point of highest density of perpendicularly aligned TFSI near the electrode. Maxima in the DC observed around +1.5 and -2.5 V(RPZC) are associated with the onset of "saturation", or crowding, of the interfacial layer. The asymmetry of DC versus electrode polarity is the result of strong interactions between the fluorine of TFSI and the surface, the relatively large footprint of TFSI compared to pyr(13), and the tendency of the propyl tails of pyr(13) to remain adsorbed on the surface even at high positive potentials. Finally, an observed decreased DC and the disappearance of the minimum in DC near the PZC with increasing temperature are likely due to the increasing importance of entropic/excluded volume effects (interfacial crowding) with increasing temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA