RESUMO
BACKGROUND: Suicide is a manner of death resulting from complex environmental and genetic risks that affect millions of people globally. Both structural and functional studies identified the hippocampus as one of the vulnerable brain regions contributing to suicide risk. METHODS: We have identified the hippocampal tissue transcriptomes, gene ontology, cell type proportions, and dendritic spine morphology in controls (n = 28) and suicide decedents (n = 22). In addition, the transcriptomic signature in iPSC-derived neuronal precursor cells (NPCs) and neurons were also investigated in controls (n = 2) and suicide decedents (n = 2). RESULTS: The hippocampal tissue transcriptomic data revealed that NPAS4 gene expression was downregulated while ALDH1A2, NAAA, and MLXIPL gene expressions were upregulated in hippocampal tissue of suicide decedents. The gene ontology identified 29 significant pathways including NPAS4-associated gene ontology terms "excitatory post-synaptic potential", "regulation of postsynaptic membrane potential" and "long-term memory" indicating alteration of glutamatergic synapses in the hippocampus of suicide decedents. The cell type deconvolution identified decreased excitatory neuron proportion and an increased inhibitory neuron proportion providing evidence of excitation/inhibition imbalance in the hippocampus of suicide decedents. In addition, suicide decedents had increased dendric spine density in the hippocampus, due to an increase of thin (relatively unstable) dendritic spines, compared to controls. The transcriptomes of iPSC-derived hippocampal-like NPCs and neurons revealed 31 and 33 differentially expressed genes in NPC and neurons, respectively, of suicide decedents. CONCLUSIONS: Our findings will provide new insights into the hippocampal neuropathology of suicide.
Assuntos
Espinhas Dendríticas , Hipocampo , Suicídio , Transcriptoma , Humanos , Hipocampo/patologia , Masculino , Espinhas Dendríticas/patologia , Feminino , Adulto , Pessoa de Meia-Idade , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neurônios/patologia , Células-Tronco Neurais/patologia , Células-Tronco Pluripotentes Induzidas , IdosoRESUMO
Common mitochondrial DNA (mtDNA) deletions are large structural variants in the mitochondrial genome that accumulate in metabolically active tissues with age and have been investigated in various diseases. We applied the Splice-Break2 pipeline (designed for high-throughput quantification of mtDNA deletions) to human RNA-Seq datasets and describe the methodological considerations for evaluating common deletions in bulk, single-cell, and spatial transcriptomics datasets. A robust evaluation of 1570 samples from 14 RNA-Seq studies showed: (i) the abundance of some common deletions detected in PCR-amplified mtDNA correlates with levels observed in RNA-Seq data; (ii) RNA-Seq library preparation method has a strong effect on deletion detection; (iii) deletions had a significant, positive correlation with age in brain and muscle; (iv) deletions were enriched in cortical grey matter, specifically in layers 3 and 5; and (v) brain regions with dopaminergic neurons (i.e., substantia nigra, ventral tegmental area, and caudate nucleus) had remarkable enrichment of common mtDNA deletions.
Assuntos
Encéfalo , Substância Negra , Humanos , RNA-Seq , Encéfalo/metabolismo , Substância Negra/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genéticaRESUMO
The frontal pole (Brodmann area 10, BA10) is the largest cytoarchitectonic region of the human cortex, performing complex integrative functions. BA10 undergoes intensive adolescent grey matter pruning prior to the age of onset for bipolar disorder (BP) and schizophrenia (SCHIZ), and its dysfunction is likely to underly aspects of their shared symptomology. In this study, we investigated the role of BA10 neurotransmission-related gene expression in BP and SCHIZ. We performed qPCR to measure the expression of 115 neurotransmission-related targets in control, BP, and SCHIZ postmortem samples (n = 72). We chose this method for its high sensitivity to detect low-level expression. We then strengthened our findings by performing a meta-analysis of publicly released BA10 microarray data (n = 101) and identified sources of convergence with our qPCR results. To improve interpretation, we leveraged the unusually large database of clinical metadata accompanying our samples to explore the relationship between BA10 gene expression, therapeutics, substances of abuse, and symptom profiles, and validated these findings with publicly available datasets. Using these convergent sources of evidence, we identified 20 neurotransmission-related genes that were differentially expressed in BP and SCHIZ in BA10. These results included a large diagnosis-related decrease in two important therapeutic targets with low levels of expression, HTR2B and DRD4, as well as other findings related to dopaminergic, GABAergic and astrocytic function. We also observed that therapeutics may produce a differential expression that opposes diagnosis effects. In contrast, substances of abuse showed similar effects on BA10 gene expression as BP and SCHIZ, potentially amplifying diagnosis-related dysregulation.
Assuntos
Transtorno Bipolar , Esquizofrenia , Humanos , Adolescente , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Esquizofrenia/metabolismo , Lobo Frontal/metabolismo , Expressão Gênica , Transmissão Sináptica/genéticaRESUMO
Recent postmortem transcriptomic studies of schizophrenia (SCZ) have shown hundreds of differentially expressed genes. However, the extent to which these gene expression changes reflect antipsychotic drug (APD) exposure remains uncertain. We compared differential gene expression in the prefrontal cortex of SCZ patients who tested positive for APDs at the time of death with SCZ patients who did not. APD exposure was associated with numerous changes in the brain transcriptome, especially among SCZ patients on atypical APDs. Brain transcriptome data from macaques chronically treated with APDs showed that APDs affect the expression of many functionally relevant genes, some of which show expression changes in the same directions as those observed in SCZ. Co-expression modules enriched for synaptic function showed convergent patterns between SCZ and some of the APD effects, while those associated with inflammation and glucose metabolism exhibited predominantly divergent patterns between SCZ and APD effects. In contrast, major cell-type shifts inferred in SCZ were primarily unaffected by APD use. These results show that APDs may confound SCZ-associated gene expression changes in postmortem brain tissue. Disentangling these effects will help identify causal genes and improve our neurobiological understanding of SCZ.
Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , TranscriptomaRESUMO
Introduction: Large somatic deletions of mitochondrial DNA (mtDNA) accumulate with aging in metabolically active tissues such as the brain. We have cataloged the breakpoints and frequencies of large mtDNA deletions in the human brain. Methods: We quantified 112 high-frequency mtDNA somatic deletions across four human brain regions with the Splice-Break2 pipeline. In addition, we utilized PLINK/Seq to test the association of mitochondrial genotypes with the abundance of these high-frequency mtDNA deletions. A conservative p value threshold of 5E-08 was used to find the significant loci. Results: One mtDNA SNP (T14798C) was significantly associated with mtDNA deletions in two brain regions, the dorsolateral prefrontal cortex (DLPFC) and the superior temporal gyrus. Since the DLPFC showed the most robust association between T14798C and two deletion breakpoints (7816-14807 and 5462-14807), this association was tested in the DLPFC of a replication sample and validated the first results. Incorporating the C allele at 14,798 bp increased the perfect/imperfect length of the repeat at the 3' breakpoint of the two associated deletions. Conclusion: This is the first study to identify the association of mtDNA SNP with large mtDNA deletions in the human brain. The T14798C allele located in the MT-CYB gene is a common polymorphism that occurs in several mitochondrial haplogroups. We hypothesize that the T14798C association with two deletions occurs by extending the repeat length around the 3' deletion breakpoints. This simple mechanism suggests that mtDNA SNPs can affect the mitochondrial genome structure, especially in brain where high levels of reactive oxygen species lead to deletion accumulation with aging.
RESUMO
Suicide is a condition resulting from complex environmental and genetic risks that affect millions of people globally. Both structural and functional studies identified the hippocampus as one of the vulnerable brain regions contributing to suicide risk. Here, we have identified the hippocampal transcriptomes, gene ontology, cell type proportions, dendritic spine morphology, and transcriptomic signature in iPSC-derived neuronal precursor cells (NPCs) and neurons in postmortem brain tissue from suicide deaths. The hippocampal tissue transcriptomic data revealed that NPAS4 gene expression was downregulated while ALDH1A2, NAAA, and MLXIPL gene expressions were upregulated in tissue from suicide deaths. The gene ontology identified 29 significant pathways including NPAS4-associated gene ontology terms "excitatory post-synaptic potential", "regulation of postsynaptic membrane potential" and "long-term memory" indicating alteration of glutamatergic synapses in the hippocampus of suicide deaths. The cell type deconvolution identified decreased excitatory neuron proportion and an increased inhibitory neuron proportion providing evidence of excitation/inhibition imbalance in the hippocampus of suicide deaths. In addition, suicide deaths had increased dendric spine density, due to an increase of thin (relatively unstable) dendritic spines, compared to controls. The transcriptomes of iPSC-derived hippocampal-like NPCs and neurons revealed 31 and 33 differentially expressed genes in NPC and neurons, respectively, of suicide deaths. The suicide-associated differentially expressed genes in NPCs were RELN, CRH, EMX2, OXTR, PARM1 and IFITM2 which overlapped with previously published results. The previously-known suicide-associated differentially expressed genes in differentiated neurons were COL1A1, THBS1, IFITM2, AQP1, and NLRP2. Together, these findings would help better understand the hippocampal neurobiology of suicide for identifying therapeutic targets to prevent suicide.
RESUMO
Large numbers of genetic loci have been identified that are known to contain common risk alleles for schizophrenia, but linking associated alleles to specific risk genes remains challenging. Given that most alleles that influence liability to schizophrenia are thought to do so by altered gene expression, intuitively, case-control differential gene expression studies should highlight genes with a higher probability of being associated with schizophrenia and could help identify the most likely causal genes within associated loci. Here, we test this hypothesis by comparing transcriptome analysis of the dorsolateral prefrontal cortex from 563 schizophrenia cases and 802 controls with genome-wide association study (GWAS) data from the third wave study of the Psychiatric Genomics Consortium. Genes differentially expressed in schizophrenia were not enriched for common allelic association statistics compared with other brain-expressed genes, nor were they enriched for genes within associated loci previously reported to be prioritized by genetic fine-mapping. Genes prioritized by Summary-based Mendelian Randomization were underexpressed in cases compared to other genes in the same GWAS loci. However, the overall strength and direction of expression change predicted by SMR were not related to that observed in the differential expression data. Overall, this study does not support the hypothesis that genes identified as differentially expressed from RNA sequencing of bulk brain tissue are enriched for those that show evidence for genetic associations. Such data have limited utility for prioritizing genes in currently associated loci in schizophrenia.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Encéfalo , Expressão Gênica/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Mitochondrial dysfunction is a neurobiological phenomenon implicated in the pathophysiology of schizophrenia and bipolar disorder that can synergistically affect synaptic neurotransmission. We hypothesized that schizophrenia and bipolar disorder share molecular alterations at the mitochondrial and synaptic levels. Mitochondria DNA (mtDNA) copy number (CN), mtDNA common deletion (CD), mtDNA total deletion, complex I activity, synapse number, and synaptic mitochondria number were studied in the postmortem human dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus (STG), primary visual cortex (V1), and nucleus accumbens (NAc) of controls (CON), and subjects with schizophrenia (SZ), and bipolar disorder (BD). The results showed (i) the mtDNA CN is significantly higher in DLPFC of both SZ and BD, decreased in the STG of BD, and unaltered in V1 and NAc of both SZ and BD; (ii) the mtDNA CD is significantly higher in DLPFC of BD while unaltered in STG, V1, and NAc of both SZ and BD; (iii) The total deletion burden is significantly higher in DLPFC in both SZ and BD while unaltered in STG, V1, and NAc of SZ and BD; (iv) Complex I activity is significantly lower in DLPFC of both SZ and BD, which is driven by the presence of medications, with no alteration in STG, V1, and NAc. In addition, complex I protein concentration, by ELISA, was decreased across three cortical regions of SZ and BD subjects; (v) The number of synapses is decreased in DLPFC of both SZ and BD, while the synaptic mitochondria number was significantly lower in female SZ and female BD compared to female controls. Overall, these findings will pave the way to understand better the pathophysiology of schizophrenia and bipolar disorder for therapeutic interventions.
Assuntos
Transtorno Bipolar , Esquizofrenia , Transtorno Bipolar/metabolismo , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Feminino , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Esquizofrenia/metabolismo , Sinapses/metabolismoRESUMO
Suicides have increased to over 48,000 deaths yearly in the United States. Major depressive disorder (MDD) is the most common diagnosis among suicides, and identifying those at the highest risk for suicide is a pressing challenge. The objective of this study is to identify changes in gene expression associated with suicide in brain and blood for the development of biomarkers for suicide. Blood and brain were available for 45 subjects (53 blood samples and 69 dorsolateral prefrontal cortex (DLPFC) samples in total). Samples were collected from MDD patients who died by suicide (MDD-S), MDDs who died by other means (MDD-NS) and non-psychiatric controls. We analyzed gene expression using RNA and the NanoString platform. In blood, we identified 14 genes which significantly differentiated MDD-S versus MDD-NS. The top six genes differentially expressed in blood were: PER3, MTPAP, SLC25A26, CD19, SOX9, and GAR1. Additionally, four genes showed significant changes in brain and blood between MDD-S and MDD-NS; SOX9 was decreased and PER3 was increased in MDD-S in both tissues, while CD19 and TERF1 were increased in blood but decreased in DLPFC. To our knowledge, this is the first study to analyze matched blood and brain samples in a well-defined population of MDDs demonstrating significant differences in gene expression associated with completed suicide. Our results strongly suggest that blood gene expression is highly informative to understand molecular changes in suicide. Developing a suicide biomarker signature in blood could help health care professionals to identify subjects at high risk for suicide.
Assuntos
Transtorno Depressivo Maior , Suicídio , Sistemas de Transporte de Aminoácidos/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio , Transtorno Depressivo Maior/psicologia , Humanos , Córtex Pré-Frontal/metabolismo , Suicídio/psicologiaRESUMO
Clinical and preclinical studies suggest that some of the behavioral alterations observed in schizophrenia (SZ) may be mechanistically linked to synaptic dysfunction of glutamatergic signaling. Recent genetic and proteomic studies suggest alterations of cortical glutamate receptors of the AMPA-type (AMPARs), which are the predominant ligand-gated ionic channels of fast transmission at excitatory synapses. The impact of gene and protein alterations on the electrophysiological activity of AMPARs is not known in SZ. In this proof of principle work, using human postmortem brain synaptic membranes isolated from the dorsolateral prefrontal cortex (DLPFC), we combined electrophysiological analysis from microtransplanted synaptic membranes (MSM) with transcriptomic (RNA-Seq) and label-free proteomics data in 10 control and 10 subjects diagnosed with SZ. We observed in SZ a reduction in the amplitude of AMPARs currents elicited by kainate, an agonist of AMPARs that blocks the desensitization of the receptor. This reduction was not associated with protein abundance but with a reduction in kainate's potency to activate AMPARs. Electrophysiologically-anchored dataset analysis (EDA) was used to identify synaptosomal proteins that linearly correlate with the amplitude of the AMPARs responses, gene ontology functional annotations were then used to determine protein-protein interactions. Protein modules associated with positive AMPARs current increases were downregulated in SZ, while protein modules that were upregulated in SZ were associated with decreased AMPARs currents. Our results indicate that transcriptomic and proteomic alterations, frequently observed in the DLPFC in SZ, converge at the synaptic level producing a functional electrophysiological impairment of AMPARs.
Assuntos
Receptores de AMPA , Esquizofrenia , Humanos , Receptores de AMPA/genética , Transmissão Sináptica/fisiologia , Esquizofrenia/genética , Proteômica , Ácido CaínicoRESUMO
The G protein-coupled receptor kinase (GRK) family member protein GRK3 has been linked to the pathophysiology of schizophrenia and bipolar disorder. Expression, as well as protein levels, of GRK3 are reduced in post-mortem prefrontal cortex of schizophrenia subjects. Here, we investigate functional behavior and neurotransmission related to immune activation and psychosis using mice lacking functional Grk3 and utilizing a variety of methods, including behavioral, biochemical, electrophysiological, molecular, and imaging methods. Compared to wildtype controls, the Grk3-/- mice show a number of aberrations linked to psychosis, including elevated brain levels of IL-1ß, increased turnover of kynurenic acid (KYNA), hyper-responsiveness to D-amphetamine, elevated spontaneous firing of midbrain dopamine neurons, and disruption in prepulse inhibition. Analyzing human genetic data, we observe a link between psychotic features in bipolar disorder, decreased GRK expression, and increased concentration of CSF KYNA. Taken together, our data suggest that Grk3-/- mice show face and construct validity relating to the psychosis phenotype with glial activation and would be suitable for translational studies of novel immunomodulatory agents in psychotic disorders.
Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Encéfalo/metabolismo , Ácido Cinurênico/metabolismo , Camundongos , Transtornos Psicóticos/genética , Transtornos Psicóticos/metabolismo , Esquizofrenia/metabolismoRESUMO
BACKGROUND: Schizophrenia (SCZ) and bipolar disorder (BIP) are debilitating neuropsychiatric disorders, collectively affecting 2% of the world's population. Recognizing the major impact of these psychiatric disorders on the psychosocial function of more than 200 000 US Veterans, the Department of Veterans Affairs (VA) recently completed genotyping of more than 8000 veterans with SCZ and BIP in the Cooperative Studies Program (CSP) #572. METHODS: We performed genome-wide association studies (GWAS) in CSP #572 and benchmarked the predictive value of polygenic risk scores (PRS) constructed from published findings. We combined our results with available summary statistics from several recent GWAS, realizing the largest and most diverse studies of these disorders to date. RESULTS: Our primary GWAS uncovered new associations between CHD7 variants and SCZ, and novel BIP associations with variants in Sortilin Related VPS10 Domain Containing Receptor 3 (SORCS3) and downstream of PCDH11X. Combining our results with published summary statistics for SCZ yielded 39 novel susceptibility loci including CRHR1, and we identified 10 additional findings for BIP (28 326 cases and 90 570 controls). PRS trained on published GWAS were significantly associated with case-control status among European American (P < 10-30) and African American (P < .0005) participants in CSP #572. CONCLUSIONS: We have demonstrated that published findings for SCZ and BIP are robustly generalizable to a diverse cohort of US veterans. Leveraging available summary statistics from GWAS of global populations, we report 52 new susceptibility loci and improved fine-mapping resolution for dozens of previously reported associations.
Assuntos
Transtorno Bipolar/genética , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Veteranos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estados UnidosRESUMO
The study of postsynaptic excitation to inhibition (E/I ratio) imbalances in human brain diseases, is a highly relevant functional measurement poorly investigated due to postmortem degradation of synaptic receptors. We show that near-simultaneous recording of microtransplanted synaptic receptors after simulated morgue conditions allows the determination of the postsynaptic E/I ratio for at least 120 h after death, expanding the availability and use of human diseased tissue stored in brain banks.
Assuntos
Encéfalo/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Adulto , Animais , Encefalopatias/patologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Humanos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Ácido Caínico/farmacologia , Masculino , Oócitos/citologia , Oócitos/metabolismo , Ratos , Ratos Wistar , Receptores de Neurotransmissores/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/fisiologia , Temperatura , Fatores de Tempo , Ácido gama-Aminobutírico/farmacologiaRESUMO
Accumulating evidence points to a significant link between disrupted circadian rhythms and neuronal disfunctions, though the molecular mechanisms underlying this connection are virtually unexplored. The transcript Homer1a, an immediate early gene related to postsynaptic signaling, has been demonstrated to exhibit robust circadian oscillation in the brain, which supports the hypothesis that Homer1a mediates the communication between circadian inputs and neuronal activity. Here, we determined how the circadian clock is implicated in Homer1a gene regulation by using circadian clock Bmal1-mutant mice either in the presence or absence of stress stimulation. The Homer1 gene generates multiple transcripts, but only the short variant Homer1a responds to acute stress with sleep deprivation (SD) in mice. Chromatin immunoprecipitation assays revealed that both transcription factor CREB and the circadian clock component BMAL1 bind to the Homer1 promoter in mouse brain. Importantly, circadian Homer1a gene expression is unaltered in the absence of BMAL1, while its immediate early response to SD relies on BMAL1. Deletion of Bmal1 results in attenuated CREB activity in mouse brain, which appears to contribute to decreased expression of Homer1a in response to SD. In conclusion, Homer1a undergoes bimodal control by the circadian clock and CREB.
Assuntos
Relógios Circadianos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , CamundongosRESUMO
Schizophrenia is a common, chronic and debilitating neuropsychiatric syndrome affecting tens of millions of individuals worldwide. While rare genetic variants play a role in the etiology of schizophrenia, most of the currently explained liability is within common variation, suggesting that variation predating the human diaspora out of Africa harbors a large fraction of the common variant attributable heritability. However, common variant association studies in schizophrenia have concentrated mainly on cohorts of European descent. We describe genome-wide association studies of 6152 cases and 3918 controls of admixed African ancestry, and of 1234 cases and 3090 controls of Latino ancestry, representing the largest such study in these populations to date. Combining results from the samples with African ancestry with summary statistics from the Psychiatric Genomics Consortium (PGC) study of schizophrenia yielded seven newly genome-wide significant loci, and we identified an additional eight loci by incorporating the results from samples with Latino ancestry. Leveraging population differences in patterns of linkage disequilibrium, we achieve improved fine-mapping resolution at 22 previously reported and 4 newly significant loci. Polygenic risk score profiling revealed improved prediction based on trans-ancestry meta-analysis results for admixed African (Nagelkerke's R2 = 0.032; liability R2 = 0.017; P < 10-52), Latino (Nagelkerke's R2 = 0.089; liability R2 = 0.021; P < 10-58), and European individuals (Nagelkerke's R2 = 0.089; liability R2 = 0.037; P < 10-113), further highlighting the advantages of incorporating data from diverse human populations.
Assuntos
População Negra/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Esquizofrenia/genética , Feminino , Loci Gênicos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Mitochondria have been linked to the etiology of schizophrenia (SZ). However, studies of mitochondria in SZ might be confounded by the effects of pharmacological treatment with antipsychotic drugs (APDs) and other common medications. This review summarizes findings on relevant mitochondria mechanisms underlying SZ, and the potential impact of psychoactive drugs including primarily APDs, but also antidepressants and anxiolytics. The summarized data suggest that APDs impair mitochondria function by decreasing Complex I activity and ATP production and dissipation of the mitochondria membrane potential. At the same time, in the brains of patients with SZ, antipsychotic drug treatment normalizes gene expression modules enriched in mitochondrial genes that are decreased in SZ. This indicates that APDs may have both positive and negative effects on mitochondria. The available evidence suggests three conclusions i) alterations in mitochondria functions in SZ exist prior to APD treatment, ii) mitochondria alterations in SZ can be reversed by APD treatment, and iii) APDs directly cause impairment of mitochondria function. Overall, the mechanisms of action of psychiatric drugs on mitochondria are both direct and indirect; we conclude the effects of APDs on mitochondria may contribute to both their therapeutic and metabolic side effects. These studies support the hypothesis that neuronal mitochondria are an etiological factor in SZ. Moreover, APDs and other drugs must be considered in the evaluation of this pathophysiological role of mitochondria in SZ. Considering these effects, pharmacological actions on mitochondria may be a worthwhile target for further APD development.
Assuntos
Antipsicóticos , Preparações Farmacêuticas , Esquizofrenia , Antipsicóticos/uso terapêutico , Encéfalo/metabolismo , Humanos , Mitocôndrias , Preparações Farmacêuticas/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismoRESUMO
BACKGROUND: Evidence from anatomical, pharmacological, and genetic studies supports a role for the neuropeptide melanin concentrating hormone system in modulating emotional and cognitive functions. Genome-wide association studies revealed a potential association between the melanin concentrating hormone receptor (MCHR1) gene locus and schizophrenia, and the largest genome-wide association study conducted to date shows a credible genome-wide association. METHODS: We analyzed MCHR1 and pro-melanin concentrating hormone RNA-Seq expression in the prefrontal cortex in schizophrenia patients and healthy controls. Disruptions in the melanin concentrating hormone system were modeled in the mouse brain by germline deletion of MCHR1 and by conditional ablation of melanin concentrating hormone expressing neurons using a Cre-inducible diphtheria toxin system. RESULTS: MCHR1 expression is decreased in the prefrontal cortex of schizophrenia samples (false discovery rate (FDR) P < .05, CommonMind and PsychEncode combined datasets, n = 901) while pro-melanin concentrating hormone is below the detection threshold. MCHR1 expression decreased with aging (P = 6.6E-57) in human dorsolateral prefrontal cortex. The deletion of MCHR1 was found to lead to behavioral abnormalities mimicking schizophrenia-like phenotypes: hyperactivity, increased stereotypic and repetitive behavior, social impairment, impaired sensorimotor gating, and disrupted cognitive functions. Conditional ablation of pro-melanin concentrating hormone neurons increased repetitive behavior and produced a deficit in sensorimotor gating. CONCLUSIONS: Our study indicates that early disruption of the melanin concentrating hormone system interferes with neurodevelopmental processes, which may contribute to the pathogenesis of schizophrenia. Further neurobiological research on the developmental timing and circuits that are affected by melanin concentrating hormone may lead to a therapeutic target for early prevention of schizophrenia.
Assuntos
Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Transtornos da Memória/fisiopatologia , Hormônios Hipofisários/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Somatostatina/deficiência , Receptores de Somatostatina/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Filtro Sensorial/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Comportamento Animal/fisiologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Feto , Humanos , Lactente , Masculino , Transtornos da Memória/etiologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Esquizofrenia/complicações , Adulto JovemRESUMO
Evidence from animal and human studies has linked myo-inositol (MI) with the pathophysiology and/or treatment of psychiatric disorders such as schizophrenia and bipolar disorder. However, there is still controversy surrounding the definitive role of MI in these disorders. Given that brain MI is differentially regulated by three transporters - SMIT1, SMIT2 and/or HMIT (encoded by the genes: SLC5A3, SLC5A11, and SLC2A13, respectively) - we used available datasets to describe the distribution in mouse and human brain of the different MI transporters and to examine changes in mRNA expression of these transporters in patients with schizophrenia and bipolar disorder. We found a differential distribution of the mRNA of each of the three MI transporters in both human and mouse brain regions. Interestingly, while individual neurons express SMIT1 and HMIT, non-neuronal cells express SMIT2, thus partially accounting for different uptake levels of MI and concordance to downstream second messenger signaling pathways. We also found that the expression of MI transporters is significantly changed in schizophrenia and bipolar disorder in a diagnostic-, brain region- and subtype-specific manner. We then examined the effects of germline deletion in mice of Slc5a3 on behavioral phenotypes related to schizophrenia and bipolar disorder. This gene deletion produces behavioral deficits that mirror some specific symptoms of schizophrenia and bipolar disorder. Finally, chronic administration of MI was able to reverse particular, but not all, behavioral deficits in Slc5a3 knockout mice; MI itself induced some behavioral deficits. Our data support a strong correlation between the expression of MI transporters and schizophrenia and bipolar disorder, and suggest that brain region-specific aberration of one or more of these transporters determines the partial behavioral phenotypes and/or symptomatic pattern of these disorders.
RESUMO
Mitochondrial dysfunction has been associated with schizophrenia (SZ) and bipolar disorder (BD). This review examines recent publications and novel associations between mitochondrial genes and SZ and BD. Associations of nuclear-encoded mitochondrial variants with SZ were found using gene- and pathway-based approaches. Two control region mitochondrial DNA (mtDNA) SNPs, T16519C and T195C, both showed an association with SZ and BD. A review of 4 studies of A15218G located in the cytochrome B oxidase gene (CYTB, SZ = 11,311, control = 35,735) shows a moderate association with SZ (p = 2.15E-03). Another mtDNA allele A12308G was nominally associated with psychosis in BD type I subjects and SZ. The first published study testing the epistatic interaction between nuclear-encoded and mitochondria-encoded genes demonstrated evidence for potential interactions between mtDNA and the nuclear genome for BD. A similar analysis for the risk of SZ revealed significant joint effects (34 nuclear-mitochondria SNP pairs with joint effect p ≤ 5E-07) and significant enrichment of projection neurons. The mitochondria-encoded gene CYTB was found in both the epistatic interactions for SZ and BD and the single SNP association of SZ. Future efforts considering population stratification and polygenic risk scores will test the role of mitochondrial variants in psychiatric disorders.