Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nat Commun ; 14(1): 6685, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865642

RESUMO

Organoids are engineered 3D miniature tissues that are defined by their organ-like structures, which drive a fundamental understanding of human development. However, current organoid generation methods are associated with low production throughputs and poor control over size and function including due to organoid merging, which limits their clinical and industrial translation. Here, we present a microfluidic platform for the mass production of lumenogenic embryoid bodies and functional cardiospheres. Specifically, we apply triple-jet in-air microfluidics for the ultra-high-throughput generation of hollow, thin-shelled, hydrogel microcapsules that can act as spheroid-forming bioreactors in a cytocompatible, oil-free, surfactant-free, and size-controlled manner. Uniquely, we show that microcapsules generated by in-air microfluidics provide a lumenogenic microenvironment with near 100% efficient cavitation of spheroids. We demonstrate that upon chemical stimulation, human pluripotent stem cell-derived spheroids undergo cardiomyogenic differentiation, effectively resulting in the mass production of homogeneous and functional cardiospheres that are responsive to external electrical stimulation. These findings drive clinical and industrial adaption of stem cell technology in tissue engineering and drug testing.


Assuntos
Corpos Embrioides , Células-Tronco Pluripotentes , Humanos , Cápsulas , Engenharia Tecidual/métodos , Organoides , Esferoides Celulares
2.
Nucleic Acids Res ; 51(3): 1277-1296, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36625255

RESUMO

Microfold (M) cells reside in the intestinal epithelium of Peyer's patches (PP). Their unique ability to take up and transport antigens from the intestinal lumen to the underlying lymphoid tissue is key in the regulation of the gut-associated immune response. Here, we applied a multi-omics approach to investigate the molecular mechanisms that drive M cell differentiation in mouse small intestinal organoids. We generated a comprehensive profile of chromatin accessibility changes and transcription factor dynamics during in vitro M cell differentiation, allowing us to uncover numerous cell type-specific regulatory elements and associated transcription factors. By using single-cell RNA sequencing, we identified an enterocyte and M cell precursor population. We used our newly developed computational tool SCEPIA to link precursor cell-specific gene expression to transcription factor motif activity in cis-regulatory elements, uncovering high expression of and motif activity for the transcription factor ONECUT2. Subsequent in vitro and in vivo perturbation experiments revealed that ONECUT2 acts downstream of the RANK/RANKL signalling axis to support enterocyte differentiation, thereby restricting M cell lineage specification. This study sheds new light on the mechanism regulating cell fate balance in the PP, and it provides a powerful blueprint for investigation of cell fate switches in the intestinal epithelium.


Assuntos
Enterócitos , Células M , Animais , Camundongos , Diferenciação Celular , Mucosa Intestinal , Intestino Delgado , Multiômica , Fatores de Transcrição/metabolismo
3.
Epigenomes ; 6(3)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35997369

RESUMO

Embryonic development is a highly intricate and complex process. Different regulatory mechanisms cooperatively dictate the fate of cells as they progress from pluripotent stem cells to terminally differentiated cell types in tissues. A crucial regulator of these processes is the Polycomb Repressive Complex 2 (PRC2). By catalyzing the mono-, di-, and tri-methylation of lysine residues on histone H3 tails (H3K27me3), PRC2 compacts chromatin by cooperating with Polycomb Repressive Complex 1 (PRC1) and represses transcription of target genes. Proteomic and biochemical studies have revealed two variant complexes of PRC2, namely PRC2.1 which consists of the core proteins (EZH2, SUZ12, EED, and RBBP4/7) interacting with one of the Polycomb-like proteins (MTF2, PHF1, PHF19), and EPOP or PALI1/2, and PRC2.2 which contains JARID2 and AEBP2 proteins. MTF2 and JARID2 have been discovered to have crucial roles in directing and recruiting PRC2 to target genes for repression in embryonic stem cells (ESCs). Following these findings, recent work in the field has begun to explore the roles of different PRC2 variant complexes during different stages of embryonic development, by examining molecular phenotypes of PRC2 mutants in both in vitro (2D and 3D differentiation) and in vivo (knock-out mice) assays, analyzed with modern single-cell omics and biochemical assays. In this review, we discuss the latest findings that uncovered the roles of different PRC2 proteins during cell-fate and lineage specification and extrapolate these findings to define a developmental roadmap for different flavors of PRC2 regulation during mammalian embryonic development.

4.
Cold Spring Harb Protoc ; 2022(12): 641-652, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35953244

RESUMO

Single-cell omics such as single-cell RNA-sequencing (RNA-seq) have been used extensively to obtain single-cell genome-wide expression data. This technique can be used to compare mutant and wild-type embryos at predifferentiation stages when individual tissues are not yet formed (therefore requiring genotyping to distinguish among embryos), for example, to determine effects of mutations on developmental trajectories or congenital disease phenotypes. It is, however, hard to use single cells for this technique, because such embryos or cells would need to be frozen until genotyping is complete to capture a given developmental stage precisely, but intact cells cannot be isolated from frozen samples. We developed a protocol in which high-quality nuclei are isolated from frozen cell suspensions, allowing for genotyping individual embryos based on a small fraction of a single embryo suspension. The remaining suspension is frozen. After genotyping is complete, nuclei are isolated from embryo suspensions with the desired genotype and encapsulated in 10× Genomics barcoded gel beads for single-nucleus RNA-seq. We provide a step-by-step protocol that can be used for single transcriptomic analysis as well as single-nucleus chromatin accessibility assays such as ATAC-seq. This technique allows for high-quality high-throughput single-nucleus analysis of gene expression in genotyped embryos. This approach may also be valuable for collection of wild-type embryonic material, for example, when collecting tissue from a particular developmental stage. In addition, freezing of tissue suspensions allows precise staging of collected embryos or tissue that may be difficult to manage when collecting and processing cells from living embryos for single-cell RNA-seq.


Assuntos
Núcleo Celular , Cromatina , Animais , Congelamento , Núcleo Celular/genética , Núcleo Celular/metabolismo , Xenopus , Cromatina/metabolismo , Imunoprecipitação da Cromatina/métodos
5.
Cell Rep ; 38(7): 110364, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172134

RESUMO

Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct identities. Cell differentiation is a highly regulated process that involves the function of numerous transcription factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs). Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput, and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional data composed of more than two data types is challenging. Here, we use linked self-organizing maps to combine chromatin immunoprecipitation sequencing (ChIP-seq)/ATAC-seq with temporal, spatial, and perturbation RNA sequencing (RNA-seq) data from Xenopus tropicalis mesendoderm development to build a high-resolution genome scale mechanistic GRN. We recover both known and previously unsuspected TF-DNA/TF-TF interactions validated through reporter assays. Our analysis provides insights into transcriptional regulation of early cell fate decisions and provides a general approach to building GRNs using highly dimensional multi-omic datasets.


Assuntos
Endoderma/embriologia , Redes Reguladoras de Genes , Genômica , Mesoderma/embriologia , Xenopus/embriologia , Xenopus/genética , Animais , Cromatina/metabolismo , Sequência Consenso/genética , DNA/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Ligação Proteica , RNA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Nat Biomed Eng ; 6(4): 389-402, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34992271

RESUMO

The lack of a scalable and robust source of well-differentiated human atrial myocytes constrains the development of in vitro models of atrial fibrillation (AF). Here we show that fully functional atrial myocytes can be generated and expanded one-quadrillion-fold via a conditional cell-immortalization method relying on lentiviral vectors and the doxycycline-controlled expression of a recombinant viral oncogene in human foetal atrial myocytes, and that the immortalized cells can be used to generate in vitro models of AF. The method generated 15 monoclonal cell lines with molecular, cellular and electrophysiological properties resembling those of primary atrial myocytes. Multicellular in vitro models of AF generated using the immortalized atrial myocytes displayed fibrillatory activity (with activation frequencies of 6-8 Hz, consistent with the clinical manifestation of AF), which could be terminated by the administration of clinically approved antiarrhythmic drugs. The conditional cell-immortalization method could be used to generate functional cell lines from other human parenchymal cells, for the development of in vitro models of human disease.


Assuntos
Fibrilação Atrial , Antiarrítmicos/metabolismo , Antiarrítmicos/uso terapêutico , Átrios do Coração , Humanos , Miócitos Cardíacos/metabolismo
7.
Nat Commun ; 12(1): 6985, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848733

RESUMO

Polycomb Repressive Complex 2 (PRC2) is crucial for the coordinated expression of genes during early embryonic development, catalyzing histone H3 lysine 27 trimethylation. Two distinct PRC2 complexes, PRC2.1 and PRC2.2, contain respectively MTF2 and JARID2 in embryonic stem cells (ESCs). In this study, we explored their roles in lineage specification and commitment, using single-cell transcriptomics and mouse embryoid bodies derived from Mtf2 and Jarid2 null ESCs. We observe that the loss of Mtf2 results in enhanced and faster differentiation towards cell fates from all germ layers, while the Jarid2 null cells are predominantly directed towards early differentiating precursors, with reduced efficiency towards mesendodermal lineages. These effects are caused by derepression of developmental regulators that are poised for activation in pluripotent cells and gain H3K4me3 at their promoters in the absence of PRC2 repression. Upon lineage commitment, the differentiation trajectories are relatively similar to those of wild-type cells. Together, our results uncover a major role for MTF2-containing PRC2.1 in balancing poised lineage-specific gene activation, whereas the contribution of JARID2-containing PRC2 is more selective in nature compared to MTF2. These data explain how PRC2 imposes thresholds for lineage choice during the exit of pluripotency.


Assuntos
Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Células-Tronco Pluripotentes/fisiologia , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Animais , Diferenciação Celular , Corpos Embrioides , Células-Tronco Embrionárias , Inativação Gênica , Camadas Germinativas , Histonas , Linfócitos Nulos , Camundongos , Regiões Promotoras Genéticas , Ativação Transcricional , Transcriptoma
8.
J Cell Mol Med ; 25(23): 10869-10878, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34725901

RESUMO

Tissue engineering (TE) of long tracheal segments is conceptually appealing for patients with inoperable tracheal pathology. In tracheal TE, stem cells isolated from bone marrow or adipose tissue have been employed, but the ideal cell source has yet to be determined. When considering the origin of stem cells, cells isolated from a source embryonically related to the trachea may be more similar. In this study, we investigated the feasibility of isolating progenitor cells from pleura and pericard as an alternative cells source for tracheal tissue engineering. Porcine progenitor cells were isolated from pleura, pericard, trachea and adipose tissue and expanded in culture. Isolated cells were characterized by PCR, RNA sequencing, differentiation assays and cell survival assays and were compared to trachea and adipose-derived progenitor cells. Progenitor-like cells were successfully isolated and expanded from pericard and pleura as indicated by gene expression and functional analyses. Gene expression analysis and RNA sequencing showed a stem cell signature indicating multipotency, albeit that subtle differences between different cell sources were visible. Functional analysis revealed that these cells were able to differentiate towards chondrogenic, osteogenic and adipogenic lineages. Isolation of progenitor cells from pericard and pleura with stem cell features is feasible. Although functional differences with adipose-derived stem cells were limited, based on their gene expression, pericard- and pleura-derived stem cells may represent a superior autologous cell source for cell seeding in tracheal tissue engineering.


Assuntos
Células-Tronco Multipotentes/citologia , Pericárdio/citologia , Pleura/citologia , Traqueia/citologia , Adipócitos/citologia , Adipogenia/fisiologia , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/fisiologia , Células-Tronco/citologia , Suínos , Engenharia Tecidual/métodos
9.
Nucleic Acids Res ; 49(14): 7966-7985, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34244796

RESUMO

Proper cell fate determination is largely orchestrated by complex gene regulatory networks centered around transcription factors. However, experimental elucidation of key transcription factors that drive cellular identity is currently often intractable. Here, we present ANANSE (ANalysis Algorithm for Networks Specified by Enhancers), a network-based method that exploits enhancer-encoded regulatory information to identify the key transcription factors in cell fate determination. As cell type-specific transcription factors predominantly bind to enhancers, we use regulatory networks based on enhancer properties to prioritize transcription factors. First, we predict genome-wide binding profiles of transcription factors in various cell types using enhancer activity and transcription factor binding motifs. Subsequently, applying these inferred binding profiles, we construct cell type-specific gene regulatory networks, and then predict key transcription factors controlling cell fate transitions using differential networks between cell types. This method outperforms existing approaches in correctly predicting major transcription factors previously identified to be sufficient for trans-differentiation. Finally, we apply ANANSE to define an atlas of key transcription factors in 18 normal human tissues. In conclusion, we present a ready-to-implement computational tool for efficient prediction of transcription factors in cell fate determination and to study transcription factor-mediated regulatory mechanisms. ANANSE is freely available at https://github.com/vanheeringen-lab/ANANSE.


Assuntos
Algoritmos , Biologia Computacional/métodos , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Diferenciação Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Especificidade de Órgãos/genética , RNA-Seq/métodos , Fatores de Transcrição/metabolismo
10.
EMBO J ; 40(9): e104913, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33555045

RESUMO

During vertebrate gastrulation, mesoderm is induced in pluripotent cells, concomitant with dorsal-ventral patterning and establishing of the dorsal axis. We applied single-cell chromatin accessibility and transcriptome analyses to explore the emergence of cellular heterogeneity during gastrulation in Xenopus tropicalis. Transcriptionally inactive lineage-restricted genes exhibit relatively open chromatin in animal caps, whereas chromatin accessibility in dorsal marginal zone cells more closely reflects transcriptional activity. We characterized single-cell trajectories and identified head and trunk organizer cell clusters in early gastrulae. By integrating chromatin accessibility and transcriptome data, we inferred the activity of transcription factors in single-cell clusters and tested the activity of organizer-expressed transcription factors in animal caps, alone or in combination. The expression profile induced by a combination of Foxb1 and Eomes most closely resembles that observed in the head organizer. Genes induced by Eomes, Otx2, or the Irx3-Otx2 combination are enriched for maternally regulated H3K4me3 modifications, whereas Lhx8-induced genes are marked more frequently by zygotically controlled H3K4me3. Taken together, our results show that transcription factors cooperate in a combinatorial fashion in generally open chromatin to orchestrate zygotic gene expression.


Assuntos
Cromatina/genética , Análise de Célula Única/métodos , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/genética , Xenopus/embriologia , Animais , Padronização Corporal , Cromatina/metabolismo , Gastrulação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência de RNA , Xenopus/genética , Proteínas de Xenopus/metabolismo
11.
Stem Cell Reports ; 15(6): 1287-1300, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-32763159

RESUMO

Polycomb Repressive Complex 2 (PRC2) plays an essential role in gene repression during development, catalyzing H3 lysine 27 trimethylation (H3K27me3). MTF2 in the PRC2.1 sub-complex, and JARID2 in PRC2.2, are central in core PRC2 recruitment to target genes in mouse embryonic stem cells (mESCs). To investigate how PRC2.1 and PRC2.2 cooperate, we combined Polycomb mutant mESCs with chemical inhibition of binding to H3K27me3. We find that PRC2.1 and PRC2.2 mediate two distinct paths for recruitment, which are mutually reinforced. Whereas PRC2.1 recruitment is mediated by MTF2 binding to DNA, JARID2-containing PRC2.2 recruitment is more dependent on PRC1. Both recruitment axes are supported by core subunit EED binding to H3K27me3, but EED inhibition exhibits a more pronounced effect in Jarid2 null cells. Finally, we show that PRC1 and PRC2 enhance reciprocal binding. Together, these data disentangle the interdependent interactions that are important for PRC2 recruitment.


Assuntos
Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Histonas/genética , Histonas/metabolismo , Camundongos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/genética
12.
PeerJ ; 8: e8952, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351783

RESUMO

Reprogramming somatic cells to induced pluripotent stem cells (iPSC) succeeds only in a small fraction of cells within the population. Reprogramming occurs in distinctive stages, each facing its own bottlenecks. It initiates with overexpression of transcription factors OCT4, SOX2, KLF4 and c-MYC (OSKM) in somatic cells such as mouse embryonic fibroblasts (MEFs). OSKM bind chromatin, silencing the somatic identity and starting the stepwise reactivation of the pluripotency programme. However, inefficient suppression of the somatic lineage leads to unwanted epigenetic memory from the tissue of origin, even in successfully generated iPSCs. Thus, it is essential to shed more light on chromatin regulators and processes involved in dissolving the somatic identity. Recent work characterised the role of transcriptional corepressors NCOR1 and NCOR2 (also known as NCoR and SMRT), showing that they cooperate with c-MYC to silence pluripotency genes during late reprogramming stages. NCOR1/NCOR2 were also proposed to be involved in silencing fibroblast identity, however it is unclear how this happens. Here, we shed light on the role of NCOR1 in early reprogramming. We show that siRNA-mediated ablation of NCOR1 and OCT4 results in very similar phenotypes, including transcriptomic changes and highly correlated high-content colony phenotypes. Both NCOR1 and OCT4 bind to promoters co-occupied by c-MYC in MEFs. During early reprogramming, downregulation of one group of somatic MEF-expressed genes requires both NCOR1 and OCT4, whereas another group of MEF-expressed genes is downregulated by NCOR1 but not OCT4. Our data suggest that NCOR1, assisted by OCT4 and c-MYC, facilitates transcriptional repression of genes with high expression in MEFs, which is necessary to bypass an early reprogramming block; this way, NCOR1 facilitates early reprogramming progression.

13.
Cold Spring Harb Protoc ; 2020(5): 097915, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32123020

RESUMO

High-throughput sequencing methods have created exciting opportunities to explore the regulatory landscape of the entire genome. Here we introduce methods to characterize the genomic locations of bound proteins, open chromatin, and sites of DNA-DNA contact in Xenopus embryos. These methods include chromatin immunoprecipitation followed by sequencing (ChIP-seq), a combination of DNase I digestion and sequencing (DNase-seq), the assay for transposase-accessible chromatin and sequencing (ATAC-seq), and the use of proximity-based DNA ligation followed by sequencing (Hi-C).


Assuntos
Cromatina/genética , Embrião não Mamífero/metabolismo , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Xenopus/genética , Animais , Cromatina/metabolismo , Imunoprecipitação da Cromatina/métodos , DNA/genética , DNA/metabolismo , Embrião não Mamífero/embriologia , Genoma/genética , Xenopus/embriologia
14.
Cold Spring Harb Protoc ; 2020(2): 098350, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31772075

RESUMO

The general field of quantitative biology has advanced significantly on the back of recent improvements in both sequencing technology and proteomics methods. The development of high-throughput, short-read sequencing has revolutionized RNA-based expression studies, while improvements in proteomics methods have enabled quantitative studies to attain better resolution. Here we introduce methods to undertake global analyses of gene expression through RNA and protein quantification in Xenopus embryos and tissues.


Assuntos
Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Proteômica/métodos , Xenopus laevis/genética , Xenopus laevis/metabolismo , Animais , Cromatografia Líquida/métodos , Embrião não Mamífero/embriologia , Proteoma/genética , Proteoma/metabolismo , Análise de Sequência de RNA/métodos , Espectrometria de Massas em Tandem/métodos , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia
15.
Biochim Biophys Acta Gene Regul Mech ; 1862(9): 194407, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31356991

RESUMO

Reprogramming to induced pluripotency through expression of OCT4, SOX2, KLF4, MYC (OSKM) factors is often considered the dedifferentiation of somatic cells. This would suggest that reprogramming represents the reversal of embryonic differentiation. Indeed, molecular events involving the activity of the pluripotency network occur in opposite directions. However, reprogramming and development substantially differ as OSKM bind to accessible regulatory elements in the genome of somatic cells due to their overexpression, including regulatory elements never bound by these factors during normal differentiation. In addition, rewiring the transcriptional network back to pluripotency involves overcoming molecular barriers that protect or stabilize the somatic identity, whereas extrinsic and intrinsic cues will drive differentiation in an energetically favorable landscape in the embryo. This review focuses on how cell fate transitions in reprogramming and development are differentially governed by interactions between transcription factors and chromatin. We also discuss how these interactions shape chromatin architecture and the transcriptional output. Major technological advances have resulted in a better understanding of both differentiation and reprogramming, which is essential to exploit reprogramming regimes for regenerative medicine.


Assuntos
Linhagem da Célula/genética , Reprogramação Celular/genética , Cromatina/genética , Fatores de Transcrição/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição SOXB1/genética
16.
Trends Cell Biol ; 29(8): 660-671, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31178244

RESUMO

Polycomb repressive complex 2 (PRC2) is a multisubunit protein complex essential for the development of multicellular organisms. Recruitment of PRC2 to target genes, followed by deposition and propagation of its catalytic product histone H3 lysine 27 trimethylation (H3K27me3), are key to the spatiotemporal control of developmental gene expression. Recent breakthrough studies have uncovered unexpected roles for substoichiometric PRC2 subunits in these processes. Here, we elaborate on how the facultative PRC2 subunits regulate catalytic activity, locus-specific PRC2 binding, and propagation of H3K27me3, and how this affects chromatin structure, gene expression, and cell fate.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , Animais , Humanos , Complexo Repressor Polycomb 2/genética
17.
Stem Cell Reports ; 12(4): 743-756, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30880078

RESUMO

Differentiated cells are epigenetically stable, but can be reprogrammed to pluripotency by expression of the OSKM transcription factors. Despite significant effort, relatively little is known about the cellular requirements for reprogramming and how they affect the properties of induced pluripotent stem cells. We have performed high-content screening with small interfering RNAs targeting 300 chromatin-associated factors and extracted colony-level quantitative features. This revealed five morphological phenotypes in early reprogramming, including one displaying large round colonies exhibiting an early block of reprogramming. Using RNA sequencing, we identified transcriptional changes associated with these phenotypes. Furthermore, double knockdown epistasis experiments revealed that BRCA1, BARD1, and WDR5 functionally interact and are required for the DNA damage response. In addition, the mesenchymal-to-epithelial transition is affected in Brca1, Bard1, and Wdr5 knockdowns. Our data provide a resource of chromatin-associated factors in early reprogramming and underline colony morphology as an important high-dimensional readout for reprogramming quality.


Assuntos
Proteína BRCA1/genética , Reprogramação Celular/genética , Dano ao DNA , Transição Epitelial-Mesenquimal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteína BRCA1/metabolismo , Cromatina/genética , Cromatina/metabolismo , Reparo do DNA , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Fenótipo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
Cold Spring Harb Protoc ; 2019(6)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30104410

RESUMO

Early Xenopus development is characterized by a poor correlation between global mRNA and protein abundances due to maternal mRNA and protein loading. Therefore, proteome profiling is necessary to study gene expression dynamics during early Xenopus development. In contrast to mammals, single Xenopus eggs and embryos contain enough protein to allow identification and quantification of thousands of proteins using mass spectrometry-based proteomics. In addition to investigating developmental processes, single egg or blastomere proteomes can be used to study cell-to-cell variability at an unprecedented depth. In this protocol, we describe a mass spectrometry-based proteomics approach for the identification and absolute quantification of Xenopus laevis egg or embryo proteomes, including sample preparation, peptide fractionation and separation, and data analysis.


Assuntos
Embrião não Mamífero/metabolismo , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Fracionamento Químico , Análise de Dados , Troca Iônica , Peptídeos/metabolismo , Manejo de Espécimes
19.
Cold Spring Harb Protoc ; 2019(1)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30042136

RESUMO

The DNA of eukaryotic genomes is packaged into chromatin by nucleosomes. This not only compacts the DNA but also plays a central role in gene regulation and establishment of cellular identity during development. Because of this packaging, the DNA is relatively inaccessible to nucleoplasmic factors; however, regulatory elements such as promoters, enhancers, and insulators are largely kept nucleosome-free. The assay for transposase-accessible chromatin (ATAC-seq) can be used to identify genomic locations of "open" chromatin, footprints of DNA-binding proteins, and positioned nucleosomes. It therefore is a powerful tool for unraveling the dynamic regulatory landscape of chromatin. The method exploits the action of hyperactive prokaryotic Tn5-transposase, which preferentially cuts DNA in accessible chromatin and tags the sites with sequencing adaptors. Here we describe an ATAC-seq protocol for use with Xenopus tropicalis embryos.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , DNA/metabolismo , Transposases/metabolismo , Animais , Ligação Proteica , Xenopus/embriologia
20.
Cold Spring Harb Protoc ; 2019(1)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30042137

RESUMO

Chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) is a powerful technique for mapping in vivo, genome-wide DNA-protein interactions. The interplay between DNA and proteins determines the transcriptional state of the genome. Using specific antibodies for the ChIP, it is possible to generate genome-wide profiles of histone posttranslational modifications, providing insight into the epigenetic memory and developmental potential of cells. The interactions between DNA and proteins involved in epigenetic regulation and transcription are highly dynamic during embryonic development. ChIP-seq allows for a detailed analysis of these dynamic changes in DNA-protein binding during embryogenesis. ChIP-seq is performed on protein epitopes that have been cross-linked to genomic DNA. After shearing the DNA, fragments bound by the (modified) protein of interest are captured with antibodies. The genomic loci of interest are identified by sequencing. Here, we provide a step-by-step ChIP-seq protocol that efficiently captures epitopes from relatively small embryo samples.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Proteínas de Ligação a DNA/metabolismo , DNA/genética , DNA/metabolismo , Animais , Sítios de Ligação , DNA/química , Regulação da Expressão Gênica no Desenvolvimento , Ligação Proteica , Xenopus/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA