Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinorg Chem Appl ; 2022: 5063177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281330

RESUMO

Rainwater discharge and human impacts produce wastewater, which is a contaminated type of water. Sediments also discharge phosphate into the water column when there is a lack of dissolved oxygen in the water. Through the manufacturing of environmentally benign nanoparticles, nanotechnology may reduce the amount of money spent by enterprises to remediate such contaminants. Because of their improved physiological, biochemical, and biomechanical qualities, nanoparticles are getting prominence. The importance of the global wastewater dilemma is discussed in this survey. The use of nanomaterials in heavy metal remediation (HMR) and wastewater treatment is covered in this survey. This paper also discusses the benefits of nanotechnology over traditional approaches in certain fields. This survey aims to gather together many recent studies on nanoparticle production and their benefits as adsorbents in the remediation of wastewater which have been done so far. The promising role of nanotechnology in wastewater remediation is surveyed in this research, which also discusses recent developments in nanotechnology-mediated remediation methods. This survey examines the vital potential of nanotechnology in wastewater treatment, as well as recent breakthroughs in nanotechnology-mediated treatment systems.

2.
Bioinorg Chem Appl ; 2022: 1946724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340422

RESUMO

Environmental damage is without a doubt one of the most serious issues confronting society today. As dental professionals, we must recognize that some of the procedures and techniques we have been using may pose environmental risks. The usage and discharge of heavy metals from dental set-ups pollute the environment and pose a serious threat to the ecosystem. Due to the exclusive properties of nanosized particles, nanotechnology is a booming field that is being extensively studied for the remediation of pollutants. Given that the nanoparticles have a high surface area to volume ratio and significantly greater reactivity, they have been greatly considered for environmental remediation. This review aims at identifying the heavy metal sources and their environmental impact in dentistry and provides insights into the usage of nanoparticles in environmental remediation. Although the literature on various functions of inorganic nanoparticles in environmental remediation was reviewed, the research is still confined to laboratory set-ups and there is a need for more studies on the usage of nanoparticles in environmental remediation.

3.
Environ Res ; 208: 112721, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031337

RESUMO

The purpose of this study was to assess the bio-fabrication possibilities of pre-isolated (from bauxite mine tailings) metal-tolerant Aspergillus niger biomass filtrate and the anticancer potential of synthesized silver nanoparticles (AgNPs) tested with a Human Cervical cancer cell line (HeLa cells: Henrietta Lacks cells). The nitrate reduction test demonstrated that A. niger has the ability to reduce nitrate, and filtrate derived from A. niger biomass efficiently fabricated AgNPs from AgNO3, as demonstrated by a visible color change from pale greenish to brownish. The UV-visible spectroscopy analysis revealed an absorbance peak at 435 nm, which corresponded to the AgNPs. These AgNPs have been capped and stabilized with several functional groups related to various bioactive molecules such as aldehyde, benzene rings, aldehydic, amines, alcohols, and carbonyl stretch protein molecules. Fourier-Transform Infrared Spectroscopy (FTIR) analysis confirmed the capping and stabilizing chemical bonding pattern. Scanning Electron Microscopy (SEM) revealed that the synthesized AgNPs were spherical, with an average size of 21.38 nm. This bio-fabricated AgNPs has in-vitro anticancer potential when tested against the HeLa cell line due to its potential size and shape. At 100 g mL-1 concentrations of this bio-fabricated AgNPs, the anticancer activity percentage was found to be 70.2%, and the IC50 value was found to be 66.32 g m-1. These findings demonstrated that the metal-tolerant A. niger cell filtrate could produce AgNPs with anticancer potential.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/química , Aspergillus niger , Células HeLa , Humanos , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Environ Res ; 209: 112771, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35065069

RESUMO

The biosynthesis of metal oxide nanoparticles provides an excellent alternative to the chemical synthesis approach. The aim of the current study was a green and eco-friendly synthesis of zirconium nanoparticles (ZrNPs) from fruit peels of Punica granatum (Pomegranate). The synthesis of ZrNPs was confirmed using a UV-visible spectrophotometer. The functional groups present on surface of ZrNPs were analyzed using FTIR. The average size of obtained ZrNPs was analyzed using SEM and DLS and it was around 20-60 nm. The antimicrobial activity of obtained ZrNPs was tested against Gram-positive strains (Bacillus subtilis and Staphylococcus aureus), Gram-negative strains (Escherichia coli and Klebsiella pneumoniae) and Fungi (Aspergillus niger) by agar well diffusion method. ZrNPs showed maximum zone of inhibition against S. aureus (19 mm) and A. niger (18 mm) at the maximum concentration of 200 µg/mL. The antioxidant scavenging activity of obtained ZrNPs was analyzed using the following methods: DPPH radical scavenging activity, Hydroxyl radical scavenging activity, Ferric reducing antioxidant power and hydrogen peroxide radical scavenging activity. This the first and foremost study on ZrNPs synthesized using P. granatum fruit peel extract reporting their efficacy as antimicrobial agents against Bacteria and Fungi. Considering the tolerance of zirconium towards human body, it can also be used as antimicrobial coating material on human implants.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Punica granatum , Antibacterianos/análise , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/análise , Antioxidantes/farmacologia , Frutas/química , Humanos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Staphylococcus aureus , Zircônio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA