Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Plants (Basel) ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794444

RESUMO

Argemone mexicana L. has been used in traditional Mexican medicine. Among its bioactive constituents, berberine (BER) has garnered attention for its cytotoxic properties against different tumor cell lines. This study investigates the in vitro toxicity against HEP-G2 (human hepatocellular carcinoma) and murine lymphoma (L5178Y-R) cells using the MTT assay of the methanol extract (AmexM), sub-partitions of A. mexicana, and BER. Selectivity indices (SIs) were determined by comparing their cytotoxic effects on VERO (monkey kidney epithelial) and PBMC (human peripheral blood mononuclear) non-tumoral cells. Additionally, the anti-hemolytic effect of these treatments was assessed using the AAPH method. The treatment with the most promising activity against tumor cells and anti-hemolytic efficacy underwent further evaluation for toxicity in Artemia salina and antioxidant activities using DPPH, ABTS, and FRAP assays. BER demonstrated an IC50 = 56.86 µg/mL in HEP-G2 cells and IC50 < 5.0 µg/mL in L5178Y-R cells, with SI values of 15.97 and >5.40 in VERO and PBMC cells, respectively. No significant hemolytic effects were observed, although AmexM and BER exhibited the highest anti-hemolytic activity. BER also demonstrated superior antioxidant efficacy, with lower toxicity in A. salina nauplii compared to the control. Additionally, BER significantly attenuated nitric oxide production. This study highlights the antiproliferative effects of A. mexicana, particularly BER, against HEP-G2 and L5178Y-R tumor cell lines, along with its selectivity towards normal cells. Furthermore, its anti-hemolytic and antioxidant potentials were demonstrated, suggesting that BER is a promising candidate for potent chemotherapeutic agents.

2.
Acc Chem Res ; 57(2): 188-197, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38156949

RESUMO

ConspectusCarbon capture, utilization, and storage have been identified as key technologies to decarbonize the energy and industrial sectors. Although postcombustion CO2 capture by absorption in aqueous amines is a mature technology, the required high regeneration energy, losses due to degradation and evaporation, and corrosion carry a high economic cost, precluding this technology to be used today at the scale required to mitigate climate change. Solid adsorbent-based systems with high CO2 capacities, high selectivity, and lower regeneration energy are becoming an attractive alternative for this purpose. Conscious of this opportunity, the search for optimal adsorbents for the capture of CO2 has become an urgent task. To accurately assess the performance of CO2 separation by adsorption at the needed scale, adsorbents should be synthesized and fully characterized under the required operating conditions, and the proper design and simulation of the process should be implemented along with techno-economic and environmental assessments. Several works have examined pure CO2 single-component adsorption or binary mixtures of CO2 with nitrogen for different families of adsorbents, primarily addressing their CO2 adsorption capacity and selectivity; however, very limited data is available under other conditions and/or with impurities, mainly due to the intensive experimental (modeling) efforts required for the large number of adsorbents to be studied, posing a challenge for their assessment under the needed conditions. In this regard, molecular simulations can be employed in synergy with experiments, reliably generating missing adsorption properties of mixtures while providing understanding at the molecular level of the mechanism of the adsorption process.This Account provides an outlook on strategies used for the rational design of materials for CO2 capture from different sources from the understanding of the adsorption mechanism at the molecular level. We illustrate with practical examples from our work and others' work how molecular simulations can be reliably used to link the molecular knowledge of novel adsorbents for which limited data exist for CO2 capture adsorption processes. Molecular simulation results of different adsorbents, including MOFs, zeolites, and carbon-based and silica-based materials, are discussed, focusing on understanding the role of physical and chemical adsorption obtained from simulations and quantifying the impact of impurities in the performance of the materials. Furthermore, simulation results can be used for screening adsorbents from basic key performance indicators, such as cycling the working capacity, selectivity, and energy requirement, or for feeding detailed dynamic models to assess their performance in swing adsorption processes on the industrial scale, additionally including monetized performance indicators such as operating expenses, equipment sizes, and compression cost. Moreover, we highlight the role of molecular simulations in guiding strategies for improving the performance of these materials by functionalization with amines or creating hybrid solid materials. We show how integrating models at different scales provides a robust and reliable assessment of the performance of the adsorbent materials under the required industrial conditions, rationally guiding the search for best performers. Trends in additional computational resources that can be used, including machine learning, and perspectives on practical requirements for leveraging CO2 capture adsorption technologies on the needed scale are also discussed.

3.
ACS Appl Mater Interfaces ; 15(47): 54432-54445, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37968934

RESUMO

The commercialization of ultrahigh capacity lithium-oxygen (Li-O2) batteries is highly dependent on the cathode architecture, and a better understanding of its role in species transport and solid discharge product (i.e., Li2O2) formation is critical to improving the discharge capacity. Tailoring the pore size distribution in the cathode structure can enhance the ion mobility and increase the number of reaction sites to improve the formation of solid Li2O2. In this work, the potential of hierarchical zeolite-templated carbon (ZTC) structures as novel electrodes for Li-O2 batteries was investigated by using reactive force field molecular dynamics simulation (reaxFF-MD). Initially, 47 microporous zeolite-templated carbon morphologies were screened based on microporosity and specific area. Among them, four structures (i.e., RHO-, BEA-, MFI-, and FAU-ZTCs) were selected for further investigation including hierarchical features in their structures. Discharge product cluster analysis, self-diffusivities, and density number profiles of Li+, O2, and dimethyl sulfoxide (DMSO) electrolyte were obtained to find that the RHO-type ZTC exhibited enhanced mass transfer compared to conventional microporous ZTC (approximately 31% for O2, 44% for Li+, and 91% for DMSO) electrodes. This is due to the promoted formation of small-sized product clusters, creating more accessible sites for oxygen reduction reaction and mass transport. These findings indicate how hierarchical ZTC electrodes with micro- and mesopores can enhance the discharge performance of aprotic Li-O2 batteries, providing molecular insights into the underlying phenomena.

4.
Rev. argent. microbiol ; 55(1): 81-90, mar. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1441188

RESUMO

Abstract Rhodococcus is a pathogen that is known to cause infections in animals and humans, mainly in cases of immunocompromised patients. A case of a pediatric cancer patient suffering from a bloodstream infection caused by Rhodococcus corynebacterioides was described in this work. Gram positive rods were isolated from blood cultures. The target bacterium was identified using a combination of biochemical tests, the MALDI-TOF mass spectrometry technique, and the analysis of the 16S rRNA sequence. Moreover, an antimicrobial susceptibility test was performed using the E-test. The isolated bacterium was identified as R. corynebacterioides. The 3-year-old patient was successfully treated with vancomycin and meropenem. This is the first published report of R. corynebacterioides in a pediatric patient diagnosed with retinoblastoma that developed a bloodstream infection. R. corynebacterioides should be considered among the opportunistic infectious agents affecting pediatric cancer patients.


Resumen Rhodococcus es un patógeno conocido por causar infecciones en animales y humanos, principalmente en pacientes inmunocomprometidos. En este trabajo se describe el caso de un paciente pediátrico con cáncer que presentó una infección del torrente sanguíneo causada por Rhodococcus corynebacterioides. A partir de hemocultivos, se aislaron bacilos gram positivos. La bacteria diana fue identificada usando una combinación de pruebas bioquímicas, por espectrometría de masas MALDI-TOF y por el análisis de la secuencia del gen 16S ARNr. Además, se realizó una prueba de sensibilidad a los antimicrobianos utilizando E-test. La cepa bacteriana se identificó como R. corynebacterioides. El paciente, de 3 años, fue tratado con vancomicina y meropenem, exitosamente. Este es el primer reporte de R. corynebacterioides como agente causal de una infección del torrente sanguíneo en un paciente pediátrico con retinoblastoma. R. corynebacterioides debe considerarse entre los agentes infecciosos oportunistas que afectan a los pacientes pediátricos con cáncer.

5.
Cancer Rep (Hoboken) ; 6(2): e1702, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054813

RESUMO

BACKGROUND: Pediatric cancer incidence in Mexico is ~160/million/year with leukemias making 49.8% of the cases. While survival rates have been reported in various Mexican studies, no data is available from the Telethon Pediatric Oncology Hospital-HITO, a nonprofit private institution specialized exclusively in comprehensive pediatric oncology care in the country that closely follows high-income countries' advanced standards of cancer care. AIM: To determine overall survival (OS) and relapse-free survival (RFS) in patients treated at HITO between December 2013 and February 2018. METHODS AND RESULTS: Secondary analysis of data extracted from medical records. It included 286 children aged 0-17 years diagnosed with various cancers grouped into three categories based on location: (1) Acute lymphoblastic leukemia (ALL), (2) tumors within the central nervous system (TWCNS), and (3) tumors outside the CNS (TOCNS). OS and RFS rates for patients who completed 1 (n = 230) and 3 (n = 132) years of follow-up after admission were computed by sex, age, and cancer location, and separately for a subsample (1-year = 191, 3-years = 110) who fulfilled the HITO criteria (no prior treatment, underwent surgery/chemotherapy when indicated, and initiated therapy). TOCNS accounted for 45.1%, but ALL was the most frequent single diagnosis with 28%. Three-year OS for patients with ALL, TWCNS, and TOCNS who fulfilled the HITO criteria were 91.9%, 86.7%, and 79.3%, respectively; for 3-year RFS these were 89.2%, 60%, and 72.4%. Boys showed slightly higher OS and RFS, but no major differences or trends were seen by age group. CONCLUSION: This study sets a relevant reference in terms of survival and relapse for children with cancer in Mexico treated at a private oncology center that uses a comprehensive and integrated therapeutic model.


Assuntos
Neoplasias do Sistema Nervoso Central , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Masculino , Humanos , México , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Incidência , Hospitais
6.
Rev Argent Microbiol ; 55(1): 68-72, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35988003

RESUMO

Rhodococcus is a pathogen that is known to cause infections in animals and humans, mainly in cases of immunocompromised patients. A case of a pediatric cancer patient suffering from a bloodstream infection caused by Rhodococcus corynebacterioides was described in this work. Gram positive rods were isolated from blood cultures. The target bacterium was identified using a combination of biochemical tests, the MALDI-TOF mass spectrometry technique, and the analysis of the 16S rRNA sequence. Moreover, an antimicrobial susceptibility test was performed using the E-test. The isolated bacterium was identified as R. corynebacterioides. The 3-year-old patient was successfully treated with vancomycin and meropenem. This is the first published report of R. corynebacterioides in a pediatric patient diagnosed with retinoblastoma that developed a bloodstream infection. R. corynebacterioides should be considered among the opportunistic infectious agents affecting pediatric cancer patients.


Assuntos
Bacteriemia , Neoplasias da Retina , Retinoblastoma , Rhodococcus , Sepse , Animais , Humanos , Criança , Pré-Escolar , Retinoblastoma/tratamento farmacológico , RNA Ribossômico 16S/genética , Sepse/diagnóstico , Sepse/tratamento farmacológico , Neoplasias da Retina/complicações , Neoplasias da Retina/tratamento farmacológico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antibacterianos/uso terapêutico
7.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076986

RESUMO

Ph-like subtypes with CRLF2 abnormalities are frequent among Hispano-Latino children with pre-B ALL. Therefore, there is solid ground to suggest that this subtype is frequent in Mexican patients. The genomic complexity of Ph-like subtype constitutes a challenge for diagnosis, as it requires diverse genomic methodologies that are not widely available in diagnostic centers in Mexico. Here, we propose a diagnostic strategy for Ph-like ALL in accordance with our local capacity. Pre-B ALL patients without recurrent gene fusions (104) were classified using a gene-expression profile based on Ph-like signature genes analyzed by qRT-PCR. The expressions of the CRLF2 transcript and protein were determined by qRT-PCR and flow cytometry. The P2RY8::CRLF2, IGH::CRLF2, ABL1/2 rearrangements, and Ik6 isoform were screened using RT-PCR and FISH. Surrogate markers of Jak2-Stat5/Abl/Ras pathways were analyzed by phosphoflow. Mutations in relevant kinases/transcription factors genes in Ph-like were assessed by target-specific NGS. A total of 40 patients (38.5%) were classified as Ph-like; of these, 36 had abnormalities associated with Jak2-Stat5 and 4 had Abl. The rearrangements IGH::CRLF2,P2RY8::CRLF2, and iAMP21 were particularly frequent. We propose a strategy for the detection of Ph-like patients, by analyzing the overexpression/genetic lesions of CRLF2, the Abl phosphorylation of surrogate markers confirmed by gene rearrangements, and Sanger sequencing.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Rearranjo Gênico , Humanos , México , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Fator de Transcrição STAT5/metabolismo
8.
ACS Omega ; 7(26): 22303-22316, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811878

RESUMO

This study focuses on developing an adhesive and cohesive molecular modeling approach to study the properties of silica surfaces and quartz cement interfaces. Atomic models were created based on reported silica surface configurations and quartz cement. For the first time, molecular dynamics (MD) simulations were conducted to investigate the cohesion and adhesion properties by predicting the interaction energy and the adhesion pressure at the cement and silica surface interface. Results show that the adhesion pressure depends on the area density (per nm2) and degree of ionization, and van der Waals forces are the major contributor to the interactions between the cement and silica surfaces. Moreover, it is shown that adhesion pressure could be the actual rock failure mechanism in contrast to the reported literature which considers cohesion as the failure mechanism. The bonding energy factors for both "dry" and "wet" conditions were used to predict the water effect on the adhesion pressure at the cement-surface interface, revealing that H2O can cause a significant reduction in adhesion pressure. In addition, relating the adhesion pressure to the dimensionless area ratio of the cement to silica surfaces resulted in a good correlation that could be used to distribute the adhesion pressure in a rock system based on the area of interactions between the cement and the surface. This study shows that MD simulations can be used to understand the chemomechanics relationship fundamental of cement-surfaces of a reservoir rock at a molecular/atomic level and to predict the rock mechanical failure for sandstones, limestones, and shales.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35820019

RESUMO

Doped ceria-based metal oxides are widely used as supports and stand-alone catalysts in reactions where CO2 is involved. Thus, it is important to understand how to tailor their CO2 adsorption behavior. In this work, steering the CO2 activation behavior of Ce-La-Cu-O ternary oxide surfaces through the combined effect of chemical and mechanical strain was thoroughly examined using both experimental and ab initio modeling approaches. Doping with aliovalent metal cations (La3+ or La3+/Cu2+) and post-synthetic ball milling were considered as the origin of the chemical and mechanical strain of CeO2, respectively. Experimentally, microwave-assisted reflux-prepared Ce-La-Cu-O ternary oxides were imposed into mechanical forces to tune the structure, redox ability, defects, and CO2 surface adsorption properties; the latter were used as key descriptors. The purpose was to decouple the combined effect of the chemical strain (εC) and mechanical strain (εM) on the modification of the Ce-La-Cu-O surface reactivity toward CO2 activation. During the ab initio calculations, the stability (energy of formation, EOvf) of different configurations of oxygen vacant sites (Ov) was assessed under biaxial tensile strain (ε > 0) and compressive strain (ε < 0), whereas the CO2-philicity of the surface was assessed at different levels of the imposed mechanical strain. The EOvf values were found to decrease with increasing tensile strain. The Ce-La-Cu-O(111) surface exhibited the lowest EOvf values for the single subsurface sites, implying that Ov may occur spontaneously upon Cu addition. The mobility of the surface and bulk oxygen anions in the lattice contributing to the Ov population was measured using 16O/18O transient isothermal isotopic exchange experiments; the maximum in the dynamic rate of 16O18O formation, Rmax(16O18O), was 13.1 and 8.5 µmol g-1 s-1 for pristine (chemically strained) and dry ball-milled (chemically and mechanically strained) oxides, respectively. The CO2 activation pathway (redox vs associative) was experimentally probed using in situ diffuse reflectance infrared Fourier transform spectroscopy. It was demonstrated that the mechanical strain increased up to 6 times the CO2 adsorption sites, though reducing their thermal stability. This result supports the mechanical actuation of the "carbonate"-bound species; the latter was in agreement with the density functional theory (DFT)-calculated C-O bond lengths and O-C-O angles. Ab initio studies shed light on the CO2 adsorption energy (Eads), suggesting a covalent bonding which is enhanced in the presence of doping and under tensile strain. Bader charge analysis probed the adsorbate/surface charge distribution and illustrated that CO2 interacts with the dual sites (acidic and basic ones) on the surface, leading to the formation of bidentate carbonate species. Density of states (DOS) studies revealed a significant Eg drop in the presence of double Ov and compressive strain, a finding with design implications in covalent type of interactions. To bridge this study with industrially important catalytic applications, Ni-supported catalysts were prepared using pristine and ball-milled oxides and evaluated for the dry reforming of methane reaction. Ball milling was found to induce modification of the metal-support interface and Ni catalyst reducibility, thus leading to an increase in the CH4 and CO2 conversions. This study opens new possibilities to manipulate the CO2 activation for a portfolio of heterogeneous reactions.

10.
Ind Eng Chem Res ; 61(21): 7414-7429, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35673400

RESUMO

We present here a novel integrated approach employing machine learning algorithms for predicting thermophysical properties of fluids. The approach allows obtaining molecular parameters to be used in the polar soft-statistical associating fluid theory (SAFT) equation of state using molecular descriptors obtained from the conductor-like screening model for real solvents (COSMO-RS). The procedure is used for modeling 18 refrigerants including hydrofluorocarbons, hydrofluoroolefins, and hydrochlorofluoroolefins. The training dataset included six inputs obtained from COSMO-RS and five outputs from polar soft-SAFT parameters, with the accurate algorithm training ensured by its high statistical accuracy. The predicted molecular parameters were used in polar soft-SAFT for evaluating the thermophysical properties of the refrigerants such as density, vapor pressure, heat capacity, enthalpy of vaporization, and speed of sound. Predictions provided a good level of accuracy (AADs = 1.3-10.5%) compared to experimental data, and within a similar level of accuracy using parameters obtained from standard fitting procedures. Moreover, the predicted parameters provided a comparable level of predictive accuracy to parameters obtained from standard procedure when extended to modeling selected binary mixtures. The proposed approach enables bridging the gap in the data of thermodynamic properties of low global warming potential refrigerants, which hinders their technical evaluation and hence their final application.

11.
Cytokine ; 155: 155896, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537330

RESUMO

The P2RY8-CRLF2 and IGH-CRLF2 rearrangements induce the overexpression of cytokine receptor-like factor 2 (CRLF2) and have been associated with relapse and poor prognosis in B-cell acute lymphoblastic leukemia (B-ALL). Additionally, they are frequently documented in high-risk Hispanic populations. To better understand the potential causes of the adverse prognosis of childhood B-ALL in Mexico, we analyzed these rearrangements and the CRLF2 mRNA and protein levels in 133 Mexican children with B-ALL. We collected bone marrow samples at diagnosis and evaluated the CRLF2 gene expression by qRT-PCR and the total CRLF2 protein by flow cytometry. P2RY8-CRLF2 and IGH-CRLF2 were detected by RT-PCR and FISH, respectively. The median time of follow-up to determine the prognostic significance of the CRLF2 abnormalities was three years. In 82% of the participants, the mRNA levels correlated with the cell-surface and intracellular CRLF2 protein levels. The P2RY8-CRLF2 rearrangement was present in 31.5% (42/133) of the patients, while the IGH-CRLF2 rearrangement was detected in 13.5% (9/67) of patients with high expression of CRLF2 (6.8% of the total sample). CRLF2 copy number variations (gain) were also detected in 7.5% (5/67) of patients with high protein levels. The overall survival (OS) presented significantly lower rates in patients with high white blood cell count (≥50x109/L) regardless of CRLF2 expression, but high levels of CRLF2 gene expression appears to contribute to the reduction of OS within this group of patients. In conclusion, in our cohort, a high occurrence of CRLF2 abnormalities was documented, particularly the P2RY8-CRLF2 rearrangement, which might represent a characteristic of the Mexican population. Targeted therapy to treat this group of patients could improve OS.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Variações do Número de Cópias de DNA , Humanos , México , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , RNA Mensageiro/genética , Receptores de Citocinas/genética
13.
Sci Total Environ ; 810: 151720, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861307

RESUMO

Carbon dioxide emissions and their sharply rising effect on global warming have encouraged research efforts to develop efficient technologies and materials for CO2 capture. Post-combustion CO2 capture by adsorption using solid materials is considered an attractive technology to achieve this goal. Templated materials, such as Zeolite Templated-Carbons and MOF-Derived Carbons, are considered as the next-generation carbon adsorbent materials, owing to their outstanding textural properties (high surface areas of ca. 4000 m2 g-1 and micropore volumes of ca. 1.7 cm3 g-1) and their versatility for surface functionalization. These materials have demonstrated remarkable CO2 adsorption capacities and CO2/N2 selectivities up to ca. 5 mmol g-1 and 100, respectively, at 298 K and 1 bar, and low isosteric heat of adsorption at zero coverage of ca. 12 kJ mol-1. Herein, a review of the advances in preparation of ZTCs and MDCs for CO2 capture is presented, followed by a critical analysis of the effects of textural properties and surface functionality on CO2 adsorption, including CO2 uptake, CO2/N2 selectivity, and isosteric heat of adsorption. This analysis led to the introduction of a Vmicrox N-content factor to evaluate the interplay between N-content and textural properties to maximize the CO2 uptake. Despite their promising performance in CO2 uptake, further testing using mixtures and impurities, and studies on adsorbent regeneration, and cyclic operation are desirable to demonstrate the stability of the MDCs and ZTCs for large scale processes. In addition, advances in scale-up syntheses and their economics are needed.


Assuntos
Dióxido de Carbono , Aquecimento Global , Adsorção
14.
Front Cardiovasc Med ; 8: 785109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912869

RESUMO

Background: Given rising morbidity, mortality, and costs due to heart failure (HF), new approaches for prevention are needed. A quantitative risk-based strategy, in line with established guidelines for atherosclerotic cardiovascular disease prevention, may efficiently select patients most likely to benefit from intensification of preventive care, but a risk-based strategy has not yet been applied to HF prevention. Methods and Results: The Feasibility of the Implementation of Tools for Heart Failure Risk Prediction (FIT-HF) pilot study will enroll 100 participants free of cardiovascular disease who receive primary care at a single integrated health system and have a 10-year predicted risk of HF of ≥5% based on the previously validated Pooled Cohort equations to Prevent Heart Failure. All participants will complete a health and lifestyle questionnaire and undergo cardiac biomarker (B-type natriuretic peptide [BNP] and high-sensitivity cardiac troponin I [hs-cTn]) and echocardiography screening at baseline and 1-year follow-up. Participants will be randomized 1:1 to either a pharmacist-led intervention or usual care for 1 year. Participants in the intervention arm will undergo consultation with a pharmacist operating under a collaborative practice agreement with a supervising cardiologist. The pharmacist will perform lifestyle counseling and recommend initiation or intensification of therapies to optimize risk factor (hypertension, diabetes, and cholesterol) management according to the most recent clinical practice guidelines. The primary outcome is change in BNP at 1-year, and secondary and exploratory outcomes include changes in hs-cTn, risk factor levels, and cardiac mechanics at follow-up. Feasibility will be examined by monitoring retention rates. Conclusions: The FIT-HF pilot study will offer insight into the feasibility of a strategy of quantitative risk-based enrollment into a pharmacist-led prevention program to reduce heart failure risk. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04684264.

15.
ACS Sustain Chem Eng ; 9(50): 17034-17048, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34956740

RESUMO

The use of hydrofluorocarbons (HFCs) as an alternative for refrigeration units has grown over the past decades as a replacement to chlorofluorocarbons (CFCs), banned by the Montreal's Protocol because of their effect on the depletion of the ozone layer. However, HFCs are known to be greenhouse gases with considerable global warming potential (GWP), thousands of times higher than carbon dioxide. The Kigali Amendment to the Montreal Protocol has promoted an active area of research toward the development of low GWP refrigerants to replace the ones in current use, and it is expected to significantly contribute to the Paris Agreement by avoiding nearly half a degree Celsius of temperature increase by the end of this century. We present here a molecular-based evaluation tool aiming at finding optimal refrigerants with the requirements imposed by current environmental legislations in order to mitigate their impact on climate change. The proposed approach relies on the robust polar soft-SAFT equation of state to predict thermodynamic properties required for their technical evaluation at conditions relevant for cooling applications. Additionally, the thermodynamic model integrated with technical criteria enable the search for compatibility of currently used third generation compounds with more eco-friendly refrigerants as drop-in replacements. The criteria include volumetric cooling capacity, coefficient of performance, and other physicochemical properties with direct impact on the technical performance of the cooling cycle. As such, R1123, R1224yd(Z), R1234ze(E), and R1225ye(Z) demonstrate high aptitude toward replacing R134a, R32, R152a, and R245fa with minimal retrofitting to the existing system. The current modeling platform for the rapid screening of emerging refrigerants offers a guide for future efforts on the design of alternative working fluids.

16.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684974

RESUMO

The adsorption-for separation, storage and transportation-of methane, hydrogen and their mixture is important for a sustainable energy consumption in present-day society. Graphene derivatives have proven to be very promising for such an application, yet for a good design a better understanding of the optimal pore size is needed. In this work, grand canonical Monte Carlo simulations, employing Improved Lennard-Jones potentials, are performed to determine the ideal interlayer distance for a slit-shaped graphene pore in a large pressure range. A detailed study of the adsorption behavior of methane, hydrogen and their equimolar mixture in different sizes of graphene pores is obtained through calculation of absolute and excess adsorption isotherms, isosteric heats and the selectivity. Moreover, a molecular picture is provided through z-density profiles at low and high pressure. It is found that an interlayer distance of about twice the van der Waals distance of the adsorbate is recommended to enhance the adsorbing ability. Furthermore, the graphene structures with slit-shaped pores were found to be very capable of adsorbing methane and separating methane from hydrogen in a mixture at reasonable working conditions (300 K and well below 15 atm).

17.
Chemosphere ; 282: 131111, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470163

RESUMO

In an ever-growing attempt to reduce the excessive anthropogenic CO2 emissions, several CO2 capture technologies have been developed in recent years. Adsorption using solid carbonaceous materials is one of the many promising examples of these technologies. Carbon-based materials, notably activated carbons, are considered very attractive adsorbents for this purpose given their exceptional thermal stability and excellent adsorption capacities. More importantly, the ability to obtain activated carbons from agricultural wastes and other biomass that are readily available makes them good candidates for several industrial applications ranging from wastewater treatment to CO2 adsorption, among others. Activated carbons from biomass can be prepared using various techniques, resulting in a range of textual properties. They can also be functionalized by adding nitrogen-based groups to their structure that facilitates faster and more efficient CO2 capture. This review provides a detailed overview of the recent work reported in this field, highlighting the different preparation methods and their differences and effects on the textual properties such as pore size, surface area, and adsorption performance in terms of the CO2 adsorption capacity and isosteric heats. The prospect of activated carbon functionalization and its effect on CO2 capture performance is also included. Finally, the review covers some of the pilot-plant scale processes in which these materials have been tested. Some identified gaps in the field have been highlighted, leading to the perspectives for future work.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Adsorção , Biomassa , Nitrogênio
18.
Sci Total Environ ; 790: 148081, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34091328

RESUMO

There exist several well-known methods with varying maturity for capturing carbon dioxide from emission sources of different concentrations, including absorption, adsorption, cryogenics and membrane separation, among others. The capture and separation steps can produce almost pure CO2, but at substantial cost for being conditioned for transport and final utilization, with high economical risks to be considered. A possible way for the elimination of this conditioning and cost is direct CO2 utilization, whether on-site in a further process but within the same plant, or in-situ, coupling both capture and conversion in the same unit. This approach is usually called integrated carbon capture and utilization (ICCU) or integrated carbon capture and conversion (ICCC), and has lately started receiving considerable attention in many circles. As CO2 is already industrially employed in other sectors, such as food preservation, water treatment and conversion to high added-value chemicals and fuels such as methanol, methane, etc., among others, it is of great interest to explore the global ICCC approach. Catalytic-based processes play a key role in CO2 conversion, and different technologies are gaining great attention from both academia and industry. However, the 'big picture of ICCU' and in which technology the efforts should focus on at large scale is still unclear. This review analyzes some promising concepts of ICCU specifically on CO2 catalytic conversion, highlighting their current commercial relevance as well as challenges that have to be faced today and in the next future.


Assuntos
Dióxido de Carbono , Metano , Catálise , Indústrias , Metanol
19.
Health Syst Reform ; 7(1): e1914897, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34125000

RESUMO

The aim of the study was to measure survival of children with acute lymphoblastic leukemia (ALL) under Mexico's public health insurance for the population treated under Seguro Popular. A retrospective cohort study using claims data from Mexico's Seguro Popular program, covering cancer treatment from 2005 to 2015 was conducted. Overall 5-year national and state-specific survival for children with ALL across Mexico who initiated cancer treatment under this program was estimated. From 2005 to 2015, 8,977 children with ALL initiated treatment under Seguro Popular. Under this financing scheme, the annual number of treated children doubled from 535 in 2005 to 1,070 in 2015. The estimates for 5-year overall survival of 61.8% (95%CI 60.8, 62.9) remained constant over time. We observed wide gaps in risk-standardized 5-year overall survival among states ranging from 74.7% to 43.7%. We found a higher risk of mortality for children who received treatment in a non-pediatric specialty hospital (Hazards Ratio, HR = 1.18; 95%CI 1.09, 1.26), facilities without a pediatric oncology/hematology specialist (HR = 2.17; 95%CI 1.62, 2.90), and hospitals with low patient volume (HR = 1.22; 95%CI 1.13, 1.32). In a decade Mexico's Seguro Popular doubled access to ALL treatment for covered children and by 2015 financed the vast majority of estimated ALL cases for that population. While some progress in ALL survival may have been achieved, nationwide 5-year overall survival did not improve over time and did not achieve levels found in comparable countries. Our results provide lessons for Mexico's evolving health system and for countries moving toward universal health coverage.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Cobertura Universal do Seguro de Saúde , Criança , Humanos , Seguro Saúde , México/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Estudos Retrospectivos
20.
Soft Matter ; 17(20): 5183-5196, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33942825

RESUMO

Poly(oxyethylene) alkyl ethers, usually denoted by CiEj surfactants, exhibit a rich phase behavior in water, self-assembling to form a variety of 3-D structures with a controllable morphology that find multiple applications across different industrial segments. Hence, being able to describe and understand the effect of molecular structure on the phase behavior of these systems is highly relevant for the efficient design of new materials and their applications. Considering the promising results obtained over the last decade using the MARTINI model to describe ethylene-oxide containing compounds, an extensive assessment of the ability of such a model to describe the phase behavior of CiEj in water was carried out and results are presented here. Given the overall poor temperature transferability of the MARTINI model, mostly due to the lack of an accurate representation of hydrogen bonding, simulations were carried out at a single temperature of 333 K, where most phases are expected to occur according to experiments. Different chain lengths of both the hydrophobic and hydrophilic moieties, spanning a wide range of hydrophilic-lipophilic balance values, were investigated and the phase diagrams of various CiEj surfactants explored over a wide concentration range. The model was able to satisfactorily describe the effect of surfactant structure and concentration on mesophase formation. The stability and dimensions of the obtained phases, and the prediction of some unique features such as the characterization of a singular lamellar phase are presented. The results obtained in this work highlight both the predictive ability and the transferability of the MARTINI forcefield in the description of such systems. Moreover, the model was shown to provide adequate descriptions of the micellar phase in terms of micelle dimensions, critical micelle concentration, and average aggregation number.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA