Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Glob Chang Biol ; 30(1): e17088, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273492

RESUMO

Microbiomes are essential features of holobionts, providing their hosts with key metabolic and functional traits like resistance to environmental disturbances and diseases. In scleractinian corals, questions remain about the microbiome's role in resistance and resilience to factors contributing to the ongoing global coral decline and whether microbes serve as a form of holobiont ecological memory. To test if and how coral microbiomes affect host health outcomes during repeated disturbances, we conducted a large-scale (32 exclosures, 200 colonies, and 3 coral species sampled) and long-term (28 months, 2018-2020) manipulative experiment on the forereef of Mo'orea, French Polynesia. In 2019 and 2020, this reef experienced the two most severe marine heatwaves on record for the site. Our experiment and these events afforded us the opportunity to test microbiome dynamics and roles in the context of coral bleaching and mortality resulting from these successive and severe heatwaves. We report unique microbiome responses to repeated heatwaves in Acropora retusa, Porites lobata, and Pocillopora spp., which included: microbiome acclimatization in A. retusa, and both microbiome resilience to the first marine heatwave and microbiome resistance to the second marine heatwave in Pocillopora spp. Moreover, observed microbiome dynamics significantly correlated with coral species-specific phenotypes. For example, bleaching and mortality in A. retusa both significantly increased with greater microbiome beta dispersion and greater Shannon Diversity, while P. lobata colonies had different microbiomes across mortality prevalence. Compositional microbiome changes, such as changes to proportions of differentially abundant putatively beneficial to putatively detrimental taxa to coral health outcomes during repeated heat stress, also correlated with host mortality, with higher proportions of detrimental taxa yielding higher mortality in A. retusa. This study reveals evidence for coral species-specific microbial responses to repeated heatwaves and, importantly, suggests that host-dependent microbiome dynamics may provide a form of holobiont ecological memory to repeated heat stress.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Branqueamento de Corais , Antozoários/fisiologia , Resposta ao Choque Térmico
2.
ISME J ; 17(12): 2389-2402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907732

RESUMO

Filamentous viruses are hypothesized to play a role in stony coral tissue loss disease (SCTLD) through infection of the endosymbiotic dinoflagellates (Family Symbiodiniaceae) of corals. To evaluate this hypothesis, it is critical to understand the global distribution of filamentous virus infections across the genetic diversity of Symbiodiniaceae hosts. Using transmission electron microscopy, we demonstrate that filamentous virus-like particles (VLPs) are present in over 60% of Symbiodiniaceae cells (genus Cladocopium) within Pacific corals (Acropora hyacinthus, Porites c.f. lobata); these VLPs are more prevalent in Symbiodiniaceae of in situ colonies experiencing heat stress. Symbiodiniaceae expelled from A. hyacinthus also contain filamentous VLPs, and these cells are more degraded than their in hospite counterparts. Similar to VLPs reported from SCTLD-affected Caribbean reefs, VLPs range from ~150 to 1500 nm in length and 16-37 nm in diameter and appear to constitute various stages in a replication cycle. Finally, we demonstrate that SCTLD-affected corals containing filamentous VLPs are dominated by diverse Symbiodiniaceae lineages from the genera Breviolum, Cladocopium, and Durusdinium. Although this study cannot definitively confirm or refute the role of filamentous VLPs in SCTLD, it demonstrates that filamentous VLPs are not solely observed in SCTLD-affected corals or reef regions, nor are they solely associated with corals dominated by members of a particular Symbiodiniaceae genus. We hypothesize that filamentous viruses are a widespread, common group that infects Symbiodiniaceae. Genomic characterization of these viruses and empirical tests of the impacts of filamentous virus infection on Symbiodiniaceae and coral colonies should be prioritized.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Dinoflagellida/genética , Recifes de Corais , Simbiose , Oceanos e Mares
3.
Sci Rep ; 13(1): 11589, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463961

RESUMO

With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean. Cores from colonies of the massive Porites and Diploastrea genera were collected from different environments to assess calcification parameters of long-lived reef-building corals. At the basin scale of the Pacific Ocean, we show that both genera systematically up-regulate their calcifying fluid pH and dissolved inorganic carbon to achieve efficient skeletal precipitation. However, while Porites corals increase the aragonite saturation state of the calcifying fluid (Ωcf) at higher temperatures to enhance their calcification capacity, Diploastrea show a steady homeostatic Ωcf across the Pacific temperature gradient. Thus, the extent to which Diploastrea responds to ocean warming and/or acidification is unclear, and it deserves further attention whether this is beneficial or detrimental to future survival of this coral genus.


Assuntos
Antozoários , Calcinose , Animais , Antozoários/fisiologia , Recifes de Corais , Regulação para Cima , Concentração de Íons de Hidrogênio , Carbonatos/metabolismo , Carbonato de Cálcio/metabolismo , Calcificação Fisiológica/fisiologia , Água do Mar
4.
Commun Biol ; 6(1): 566, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264063

RESUMO

Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.


Assuntos
Antozoários , Dinoflagellida , Vírus de RNA , Animais , Dinoflagellida/genética , Genoma , Antozoários/genética , Vírus de RNA/genética , Recifes de Corais
5.
Sci Adv ; 9(16): eadh5478, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37075120

RESUMO

A mass sea urchin die-off in the Caribbean Sea in the 1980s resulted from a single-cell protist called a scuticociliate.


Assuntos
Ouriços-do-Mar , Animais , Região do Caribe
6.
Sci Rep ; 13(1): 3617, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869057

RESUMO

Chronically high levels of inorganic nutrients have been documented in Florida's coral reefs and are linked to increased prevalence and severity of coral bleaching and disease. Naturally disease-resistant genotypes of the staghorn coral Acropora cervicornis are rare, and it is unknown whether prolonged exposure to acute or chronic high nutrient levels will reduce the disease tolerance of these genotypes. Recently, the relative abundance of the bacterial genus Aquarickettsia was identified as a significant indicator of disease susceptibility in A. cervicornis, and the abundance of this bacterial species was previously found to increase under chronic and acute nutrient enrichment. We therefore examined the impact of common constituents of nutrient pollution (phosphate, nitrate, and ammonium) on microbial community structure in a disease-resistant genotype with naturally low abundances of Aquarickettsia. We found that although this putative parasite responded positively to nutrient enrichment in a disease-resistant host, relative abundances remained low (< 0.5%). Further, while microbial diversity was not altered significantly after 3 weeks of nutrient enrichment, 6 weeks of enrichment was sufficient to shift microbiome diversity and composition. Coral growth rates were also reduced by 6 weeks of nitrate treatment compared to untreated conditions. Together these data suggest that the microbiomes of disease-resistant A. cervicornis may be initially resistant to shifts in microbial community structure, but succumb to compositional and diversity alterations after more sustained environmental pressure. As the maintenance of disease-resistant genotypes is critical for coral population management and restoration, a complete understanding of how these genotypes respond to environmental stressors is necessary to predict their longevity.


Assuntos
Antozoários , Microbiota , Animais , Nitratos , Genótipo , Nutrientes , Rickettsiales
7.
Glob Chang Biol ; 29(2): 417-431, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36315059

RESUMO

By the century's end, many tropical seas will reach temperatures exceeding most coral species' thermal tolerance on an annual basis. The persistence of corals in these regions will, therefore, depend on their abilities to tolerate recurrent thermal stress. Although ecologists have long recognized that positive interspecific interactions can ameliorate environmental stress to expand the realized niche of plants and animals, coral bleaching studies have largely overlooked how interactions with community members outside of the coral holobiont shape the bleaching response. Here, we subjected a common coral, Pocillopora grandis, to 10 days of thermal stress in aquaria with and without the damselfish Dascyllus flavicaudus (yellowtail dascyllus), which commonly shelter within these corals, to examine how interactions with damselfish impacted coral thermal tolerance. Corals often benefit from nutrients excreted by animals they interact with and prior to thermal stress, corals grown with damselfish showed improved photophysiology (Fv /Fm ) and developed larger endosymbiont populations. When exposed to thermal stress, corals with fish performed as well as control corals maintained at ambient temperatures without fish. In contrast, corals exposed to thermal stress without fish experienced photophysiological impairment, a more than 50% decline in endosymbiont density, and a 36% decrease in tissue protein content. At the end of the experiment, thermal stress caused average calcification rates to decrease by over 80% when damselfish were absent but increase nearly 25% when damselfish were present. Our study indicates that damselfish-derived nutrients can increase coral thermal tolerance and are consistent with the Stress Gradient Hypothesis, which predicts that positive interactions become increasingly important for structuring communities as environmental stress increases. Because warming of just a few degrees can exceed corals' temperature tolerance to trigger bleaching and mortality, positive interactions could play a critical role in maintaining some coral species in warming regions until climate change is aggressively addressed.


Assuntos
Antozoários , Perciformes , Animais , Antozoários/fisiologia , Recifes de Corais , Simbiose , Temperatura , Mudança Climática , Peixes
8.
Proc Natl Acad Sci U S A ; 119(51): e2122354119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508667

RESUMO

Islands support unique plants, animals, and human societies found nowhere else on the Earth. Local and global stressors threaten the persistence of island ecosystems, with invasive species being among the most damaging, yet solvable, stressors. While the threat of invasive terrestrial mammals on island flora and fauna is well recognized, recent studies have begun to illustrate their extended and destructive impacts on adjacent marine environments. Eradication of invasive mammals and restoration of native biota are promising tools to address both island and ocean management goals. The magnitude of the marine benefits of island restoration, however, is unlikely to be consistent across the globe. We propose a list of six environmental characteristics most likely to affect the strength of land-sea linkages: precipitation, elevation, vegetation cover, soil hydrology, oceanographic productivity, and wave energy. Global databases allow for the calculation of comparable metrics describing each environmental character across islands. Such metrics can be used today to evaluate relative potential for coupled land-sea conservation efforts and, with sustained investment in monitoring on land and sea, can be used in the future to refine science-based planning tools for integrated land-sea management. As conservation practitioners work to address the effects of climate change, ocean stressors, and biodiversity crises, it is essential that we maximize returns from our management investments. Linking efforts on land, including eradication of island invasive mammals, with marine restoration and protection should offer multiplied benefits to achieve concurrent global conservation goals.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Humanos , Biodiversidade , Espécies Introduzidas , Mudança Climática , Mamíferos
9.
PeerJ ; 10: e14176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345483

RESUMO

Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at -80 °C to -20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses.


Assuntos
Antozoários , Branqueamento de Corais , Animais , Recifes de Corais , Antozoários/microbiologia
10.
Ecology ; 103(12): e3831, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35862066

RESUMO

The outcomes of species interactions can vary greatly in time and space with the outcomes of some interactions determined by priority effects. On coral reefs, benthic algae rapidly colonize disturbed substrate. In the absence of top-down control from herbivorous fishes, these algae can inhibit the recruitment of reef-building corals, leading to a persistent phase shift to a macroalgae-dominated state. Yet, corals may also inhibit colonization by macroalgae, and therefore the effects of herbivores on algal communities may be strongest following disturbances that reduce coral cover. Here, we report the results from experiments conducted on the fore reef of Moorea, French Polynesia, where we: (1) tested the ability of macroalgae to invade coral-dominated and coral-depauperate communities under different levels of herbivory, (2) explored the ability of juvenile corals (Pocillopora spp.) to suppress macroalgae, and (3) quantified the direct and indirect effects of fish herbivores and corallivores on juvenile corals. We found that macroalgae proliferated when herbivory was low but only in recently disturbed communities where coral cover was also low. When coral cover was <10%, macroalgae increased 20-fold within 1 year under reduced herbivory conditions relative to high herbivory controls. Yet, when coral cover was high (50%), macroalgae were suppressed irrespective of the level of herbivory despite ample space for algal colonization. Once established in communities with low herbivory and low coral cover, macroalgae suppressed recruitment of coral larvae, reducing the capacity for coral replenishment. However, when we experimentally established small juvenile corals (2 cm diameter) following a disturbance, juvenile corals inhibited macroalgae from invading local neighborhoods, even in the absence of herbivores, indicating a strong priority effect in macroalgae-coral interactions. Surprisingly, fishes that initially facilitated coral recruitment by controlling algae had a net negative effect on juvenile corals via predation. Corallivores reduced the growth rates of corals exposed to fishes by ~30% relative to fish exclosures, despite increased competition with macroalgae within the exclosures. These results highlight that different processes are important for structuring coral reef ecosystems at different successional stages and underscore the need to consider multiple ecological processes and historical contingencies to predict coral community dynamics.


Assuntos
Antozoários , Alga Marinha , Animais , Ecossistema , Recifes de Corais , Herbivoria , Peixes
11.
Glob Chang Biol ; 28(14): 4229-4250, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35475552

RESUMO

The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.


Assuntos
Antozoários , Mudança Climática , Animais , Antozoários/fisiologia , Recifes de Corais , Ecossistema
12.
FEMS Microbiol Ecol ; 98(2)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35157069

RESUMO

Nutrient pollution is linked to coral disease susceptibility and severity, but the mechanism behind this effect remains underexplored. A recently identified bacterial species, 'Ca. Aquarickettsia rohweri,' is hypothesized to parasitize the Caribbean staghorn coral, Acropora cervicornis, leading to reduced coral growth and increased disease susceptibility. Aquarickettsia rohweri is hypothesized to assimilate host metabolites and ATP and was previously demonstrated to be highly nutrient-responsive. As nutrient enrichment is a pervasive issue in the Caribbean, this study examined the effects of common nutrient pollutants (nitrate, ammonium, and phosphate) on a disease-susceptible genotype of A. cervicornis. Microbial diversity was found to decline over the course of the experiment in phosphate-, nitrate-, and combined-treated samples, and quantitative PCR indicated that Aquarickettsia abundance increased significantly across all treatments. Only treatments amended with phosphate, however, exhibited a significant shift in Aquarickettsia abundance relative to other taxa. Furthermore, corals exposed to phosphate had significantly lower linear extension than untreated or nitrate-treated corals after 3 weeks of nutrient exposure. Together these data suggest that while experimental tank conditions, with an elevated nutrient regime associated with coastal waters, increased total bacterial abundance, only the addition of phosphate significantly altered the ratios of Aquarickettsia compared to other members of the microbiome.


Assuntos
Antozoários , Microbiota , Parasitos , Animais , Antozoários/microbiologia , Recifes de Corais , Genótipo , Fosfatos
13.
mSystems ; 7(1): e0105821, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35040699

RESUMO

A growing body of research has established that the microbiome can mediate the dynamics and functional capacities of diverse biological systems. Yet, we understand little about what governs the response of these microbial communities to host or environmental changes. Most efforts to model microbiomes focus on defining the relationships between the microbiome, host, and environmental features within a specified study system and therefore fail to capture those that may be evident across multiple systems. In parallel with these developments in microbiome research, computer scientists have developed a variety of machine learning tools that can identify subtle, but informative, patterns from complex data. Here, we recommend using deep transfer learning to resolve microbiome patterns that transcend study systems. By leveraging diverse public data sets in an unsupervised way, such models can learn contextual relationships between features and build on those patterns to perform subsequent tasks (e.g., classification) within specific biological contexts.


Assuntos
Microbiota , Microbiota/fisiologia , Aprendizado de Máquina
14.
Front Microbiol ; 13: 1007877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36891260

RESUMO

Over the past two decades, researchers have searched for methods to better understand the relationship between coral hosts and their microbiomes. Data on how coral-associated bacteria are involved in their host's responses to stressors that cause bleaching, disease, and other deleterious effects can elucidate how they may mediate, ameliorate, and exacerbate interactions between the coral and the surrounding environment. At the same time tracking coral bacteria dynamics can reveal previously undiscovered mechanisms of coral resilience, acclimatization, and evolutionary adaptation. Although modern techniques have reduced the cost of conducting high-throughput sequencing of coral microbes, to explore the composition, function, and dynamics of coral-associated bacteria, it is necessary that the entire procedure, from collection to sequencing, and subsequent analysis be carried out in an objective and effective way. Corals represent a difficult host with which to work, and unique steps in the process of microbiome assessment are necessary to avoid inaccuracies or unusable data in microbiome libraries, such as off-target amplification of host sequences. Here, we review, compare and contrast, and recommend methods for sample collection, preservation, and processing (e.g., DNA extraction) pipelines to best generate 16S amplicon libraries with the aim of tracking coral microbiome dynamics. We also discuss some basic quality assurance and general bioinformatic methods to analyze the diversity, composition, and taxonomic profiles of the microbiomes. This review aims to be a generalizable guide for researchers interested in starting and modifying the molecular biology aspects of coral microbiome research, highlighting best practices and tricks of the trade.

15.
Front Microbiol ; 12: 740932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899629

RESUMO

16S rRNA gene profiling (amplicon sequencing) is a popular technique for understanding host-associated and environmental microbial communities. Most protocols for sequencing amplicon libraries follow a standardized pipeline that can differ slightly depending on laboratory facility and user. Given that the same variable region of the 16S gene is targeted, it is generally accepted that sequencing output from differing protocols are comparable and this assumption underlies our ability to identify universal patterns in microbial dynamics through meta-analyses. However, discrepant results from a combined 16S rRNA gene dataset prepared by two labs whose protocols differed only in DNA polymerase and sequencing platform led us to scrutinize the outputs and challenge the idea of confidently combining them for standard microbiome analysis. Using technical replicates of reef-building coral samples from two species, Montipora aequituberculata and Porites lobata, we evaluated the consistency of alpha and beta diversity metrics between data resulting from these highly similar protocols. While we found minimal variation in alpha diversity between platform, significant differences were revealed with most beta diversity metrics, dependent on host species. These inconsistencies persisted following removal of low abundance taxa and when comparing across higher taxonomic levels, suggesting that bacterial community differences associated with sequencing protocol are likely to be context dependent and difficult to correct without extensive validation work. The results of this study encourage caution in the statistical comparison and interpretation of studies that combine rRNA gene sequence data from distinct protocols and point to a need for further work identifying mechanistic causes of these observed differences.

16.
Dis Aquat Organ ; 147: 25-31, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34789585

RESUMO

Aquaculture is an increasingly important food resource, but its sustainability is often limited by disease. In Scombridae fishes, puffy snout syndrome (PSS) is a debilitating condition where tumor-like collagenous growths form around the eyes, nares, and mandibles which impair vision and feeding and frequently lead to mortality. While PSS is considered an infectious or metabolic disease, no disease agents or promoters have been identified. Here, we used electron microscopy (EM) to describe the cellular pathology and search for etiological agents of PSS in Pacific mackerel Scomber japonicus, the first use of this approach for PSS. We examined aquaculture specimens across a range of apparent PSS severity, comparing the results to both wild and aquaculture asymptomatic mackerel. EM imagery consistently revealed viral-like particles in PSS samples, as well as the uniform absence of bacteria, protists, fungi, and other multicellular parasites. In addition to viral-like particles, symptomatic fish had a higher mean percentage of swollen and disintegrating mitochondria than both asymptomatic aquaculture and wild mackerel. This suggests that degraded mitochondria may be related to PSS and could be important to further understanding the origin, promoters, and prevention of PSS. This study serves as a first step in identifying the etiological agents of PSS.


Assuntos
Mitofagia , Perciformes , Animais , Eucariotos , Peixes , Microscopia Eletrônica/veterinária
17.
mSystems ; 6(5): e0044021, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34636674

RESUMO

Shotgun metagenomic sequencing has transformed our understanding of microbial community ecology. However, preparing metagenomic libraries for high-throughput DNA sequencing remains a costly, labor-intensive, and time-consuming procedure, which in turn limits the utility of metagenomes. Several library preparation procedures have recently been developed to offset these costs, but it is unclear how these newer procedures compare to current standards in the field. In particular, it is not clear if all such procedures perform equally well across different types of microbial communities or if features of the biological samples being processed (e.g., DNA amount) impact the accuracy of the approach. To address these questions, we assessed how five different shotgun DNA sequence library preparation methods, including the commonly used Nextera Flex kit, perform when applied to metagenomic DNA. We measured each method's ability to produce metagenomic data that accurately represent the underlying taxonomic and genetic diversity of the community. We performed these analyses across a range of microbial community types (e.g., soil, coral associated, and mouse gut associated) and input DNA amounts. We find that the type of community and amount of input DNA influence each method's performance, indicating that careful consideration may be needed when selecting between methods, especially for low-complexity communities. However, the cost-effective preparation methods that we assessed are generally comparable to the current gold-standard Nextera DNA Flex kit for high-complexity communities. Overall, the results from this analysis will help expand and even facilitate access to metagenomic approaches in future studies. IMPORTANCE Metagenomic library preparation methods and sequencing technologies continue to advance rapidly, allowing researchers to characterize microbial communities in previously underexplored environmental samples and systems. However, widely accepted standardized library preparation methods can be cost-prohibitive. Newly available approaches may be less expensive, but their efficacy in comparison to standardized methods remains unknown. In this study, we compared five different metagenomic library preparation methods. We evaluated each method across a range of microbial communities varying in complexity and quantity of input DNA. Our findings demonstrate the importance of considering sample properties, including community type, composition, and DNA amount, when choosing the most appropriate metagenomic library preparation method.

18.
PLoS Biol ; 19(8): e3001322, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411089

RESUMO

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.


Assuntos
Aclimatação , Organismos Aquáticos/microbiologia , Evolução Biológica , Ecologia , Microbiota , Animais , Ecossistema , Humanos , Simbiose
19.
PeerJ ; 9: e11763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285838

RESUMO

Under current climate warming predictions, the future of coral reefs is dire. With projected coral reef decline, it is likely that coral specimens for bleaching research will increasingly become a more limited resource in the future. By adopting a holistic approach through increased collaborations, coral bleaching scientists can maximize a specimen's investigative yield, thus reducing the need to remove more coral material from the reef. Yet to expand a specimen's utility for additional analytic methods, information on how corals are collected is essential as many methods are variably sensitive to upstream handling and processing. In an effort to identify common practices for coral collection, sacrifice, preservation, and processing in coral bleaching research, we surveyed the literature from the last 6.5 years and created and analyzed the resulting dataset of 171 publications. Since January 2014, at least 21,890 coral specimens were collected for bleaching surveys or bleaching experiments. These specimens spanned 122 species of scleractinian corals where the most frequently sampled were Acropora millepora, Pocillopora damicornis, and Stylophora pistillata. Almost 90% of studies removed fragments from the reef, 6% collected skeletal cores, and 3% collected mucus specimens. The most common methods for sacrificing specimens were snap freezing with liquid nitrogen, chemical preservation (e.g., with ethanol or nucleic acid stabilizing buffer), or airbrushing live fragments. We also characterized 37 distinct methodological pathways from collection to processing of specimens in preparation for a variety of physiological, -omic, microscopy, and imaging analyses. Interestingly, almost half of all studies used only one of six different pathways. These similarities in collection, preservation, and processing methods illustrate that archived coral specimens could be readily shared among researchers for additional analyses. In addition, our review provides a reference for future researchers who are considering which methodological pathway to select to maximize the utility of coral bleaching specimens that they collect.

20.
Microbiome ; 9(1): 118, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020712

RESUMO

BACKGROUND: Beginning in the last century, coral reefs have suffered the consequences of anthropogenic activities, including oil contamination. Chemical remediation methods, such as dispersants, can cause substantial harm to corals and reduce their resilience to stressors. To evaluate the impacts of oil contamination and find potential alternative solutions to chemical dispersants, we conducted a mesocosm experiment with the fire coral Millepora alcicornis, which is sensitive to environmental changes. We exposed M. alcicornis to a realistic oil-spill scenario in which we applied an innovative multi-domain bioremediator consortium (bacteria, filamentous fungi, and yeast) and a chemical dispersant (Corexit® 9500, one of the most widely used dispersants), to assess the effects on host health and host-associated microbial communities. RESULTS: The selected multi-domain microbial consortium helped to mitigate the impacts of the oil, substantially degrading the polycyclic aromatic and n-alkane fractions and maintaining the physiological integrity of the corals. Exposure to Corexit 9500 negatively impacted the host physiology and altered the coral-associated microbial community. After exposure, the abundances of certain bacterial genera such as Rugeria and Roseovarius increased, as previously reported in stressed or diseased corals. We also identified several bioindicators of Corexit 9500 in the microbiome. The impact of Corexit 9500 on the coral health and microbial community was far greater than oil alone, killing corals after only 4 days of exposure in the flow-through system. In the treatments with Corexit 9500, the action of the bioremediator consortium could not be observed directly because of the extreme toxicity of the dispersant to M. alcicornis and its associated microbiome. CONCLUSIONS: Our results emphasize the importance of investigating the host-associated microbiome in order to detect and mitigate the effects of oil contamination on corals and the potential role of microbial mitigation and bioindicators as conservation tools. Chemical dispersants were far more damaging to corals and their associated microbiome than oil, and should not be used close to coral reefs. This study can aid in decision-making to minimize the negative effects of oil and dispersants on coral reefs. Video abstract.


Assuntos
Antozoários , Poluição por Petróleo , Petróleo , Probióticos , Animais , Recifes de Corais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA