Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Plant Pathol ; 25(5): e13463, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695677

RESUMO

The barley powdery mildew fungus, Blumeria hordei (Bh), secretes hundreds of candidate secreted effector proteins (CSEPs) to facilitate pathogen infection and colonization. One of these, CSEP0008, is directly recognized by the barley nucleotide-binding leucine-rich-repeat (NLR) receptor MLA1 and therefore is designated AVRA1. Here, we show that AVRA1 and the sequence-unrelated Bh effector BEC1016 (CSEP0491) suppress immunity in barley. We used yeast two-hybrid next-generation interaction screens (Y2H-NGIS), followed by binary Y2H and in planta protein-protein interactions studies, and identified a common barley target of AVRA1 and BEC1016, the endoplasmic reticulum (ER)-localized J-domain protein HvERdj3B. Silencing of this ER quality control (ERQC) protein increased Bh penetration. HvERdj3B is ER luminal, and we showed using split GFP that AVRA1 and BEC1016 translocate into the ER signal peptide-independently. Overexpression of the two effectors impeded trafficking of a vacuolar marker through the ER; silencing of HvERdj3B also exhibited this same cellular phenotype, coinciding with the effectors targeting this ERQC component. Together, these results suggest that the barley innate immunity, preventing Bh entry into epidermal cells, requires ERQC. Here, the J-domain protein HvERdj3B appears to be essential and can be regulated by AVRA1 and BEC1016. Plant disease resistance often occurs upon direct or indirect recognition of pathogen effectors by host NLR receptors. Previous work has shown that AVRA1 is directly recognized in the cytosol by the immune receptor MLA1. We speculate that the AVRA1 J-domain target being inside the ER, where it is inapproachable by NLRs, has forced the plant to evolve this challenging direct recognition.


Assuntos
Ascomicetos , Retículo Endoplasmático , Hordeum , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Hordeum/microbiologia , Hordeum/genética , Hordeum/imunologia , Ascomicetos/patogenicidade , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Retículo Endoplasmático/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Domínios Proteicos
2.
Methods Mol Biol ; 2690: 205-222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450150

RESUMO

Yeast two-hybrid is a powerful approach to discover new protein-protein interactions. Traditional methods involve screening a target protein against a cDNA expression library and assaying individual positive colonies to identify interacting partners. Here we describe a simple approach to perform yeast two-hybrid screens of a cDNA expression library in batch liquid culture. Positive yeast cell populations are enriched under selection and then harvested en masse. Prey cDNAs are amplified and used as input for next-generation sequencing libraries for identification, quantification, and ranking.


Assuntos
Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , DNA Complementar/genética , Técnicas do Sistema de Duplo-Híbrido , Biblioteca Gênica
3.
Methods Mol Biol ; 2690: 223-239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450151

RESUMO

Yeast two-hybrid next-generation interaction screening (Y2H-NGIS) uses the output of next-generation sequencing to mine for novel protein-protein interactions. Here, we outline the analytics underlying Y2H-NGIS datasets. Different systems, libraries, and experimental designs comprise Y2H-NGIS methodologies. We summarize the analysis in several layers that comprise the characterization of baits and preys, quantification, and identification of true interactions for subsequent secondary validation. We present two software designed for this purpose, NGPINT and Y2H-SCORES, which are used as front-end and back-end tools in the analysis. Y2H-SCORES software can be used and adapted to analyze different datasets not only from Y2H-NGIS but from other techniques ruled by similar biological principles.


Assuntos
Biologia Computacional , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido
4.
Biomedica ; 42(1): 18-30, 2022 03 01.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35471167

RESUMO

INTRODUCTION: Fusarium is a very heterogeneous group of fungi, difficult to classify, with a wide range of living styles, acting as saprophytes, parasites of plants, or pathogens for humans and animals. Prevalence of clinical fusariosis and lack of effective treatments have increased the interest in the precise diagnosis, which implies a molecular characterization of Fusarium populations. OBJECTIVE: We compared different genotyping markers in their assessment of the genetic variability and molecular identification of clinical isolates of Fusarium. MATERIALS AND METHODS: We evaluated the performance of the fingerprinting produced by two random primers: M13, which amplifies a minisatellite sequence, and (GACA)4, which corresponds to a simple repetitive DNA sequence. Using the Hunter Gaston Discriminatory Index (HGDI), an analysis of molecular variance (AMOVA), and a Mantel test, the resolution of these markers was compared to the reference sequencing-based and PCR genotyping methods. RESULTS: The highest HGDI value was associated with the M13 marker followed by (GACA)4. AMOVA and the Mantel tests supported a strong correlation between the M13 classification and the reference method given by the partial sequencing of the transcription elongation factor 1-alpha (TEF1-α) and rDNA 28S. CONCLUSION: The strong correlation between the M13 classification and the sequencingbased reference together with its higher resolution demonstrates its adequacy for the characterization of Fusarium populations.


Assuntos
Fusarium , Animais , Biomarcadores , Colômbia/epidemiologia , Primers do DNA , Fusarium/genética , Genótipo , Repetições de Microssatélites
5.
Genetics ; 221(2)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35435213

RESUMO

The barley MLA nucleotide-binding leucine-rich-repeat (NLR) receptor and its orthologs confer recognition specificity to many fungal diseases, including powdery mildew, stem-, and stripe rust. We used interolog inference to construct a barley protein interactome (Hordeum vulgare predicted interactome, HvInt) comprising 66,133 edges and 7,181 nodes, as a foundation to explore signaling networks associated with MLA. HvInt was compared with the experimentally validated Arabidopsis interactome of 11,253 proteins and 73,960 interactions, verifying that the 2 networks share scale-free properties, including a power-law distribution and small-world network. Then, by successive layering of defense-specific "omics" datasets, HvInt was customized to model cellular response to powdery mildew infection. Integration of HvInt with expression quantitative trait loci (eQTL) enabled us to infer disease modules and responses associated with fungal penetration and haustorial development. Next, using HvInt and infection-time-course RNA sequencing of immune signaling mutants, we assembled resistant and susceptible subnetworks. The resulting differentially coexpressed (resistant - susceptible) interactome is essential to barley immunity, facilitates the flow of signaling pathways and is linked to mildew resistance locus a (Mla) through trans eQTL associations. Lastly, we anchored HvInt with new and previously identified interactors of the MLA coiled coli + nucleotide-binding domains and extended these to additional MLA alleles, orthologs, and NLR outgroups to predict receptor localization and conservation of signaling response. These results link genomic, transcriptomic, and physical interactions during MLA-specified immunity.


Assuntos
Arabidopsis , Ascomicetos , Hordeum , Arabidopsis/metabolismo , Ascomicetos/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/microbiologia , Nucleotídeos/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Biomédica (Bogotá) ; 42(1): 18-30, ene.-mar. 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1374504

RESUMO

Introduction: Fusarium is a very heterogeneous group of fungi, difficult to classify, with a wide range of living styles, acting as saprophytes, parasites of plants, or pathogens for humans and animals. Prevalence of clinical fusariosis and lack of effective treatments have increased the interest in the precise diagnosis, which implies a molecular characterization of Fusarium populations. Objective: We compared different genotyping markers in their assessment of the genetic variability and molecular identification of clinical isolates of Fusarium. Materials and methods: We evaluated the performance of the fingerprinting produced by two random primers: M13, which amplifies a minisatellite sequence, and (GACA)4, which corresponds to a simple repetitive DNA sequence. Using the Hunter Gaston Discriminatory Index (HGDI), an analysis of molecular variance (AMOVA), and a Mantel test, the resolution of these markers was compared to the reference sequencing-based and PCR genotyping methods. Results: The highest HGDI value was associated with the M13 marker followed by (GACA)4. AMOVA and the Mantel tests supported a strong correlation between the M13 classification and the reference method given by the partial sequencing of the transcription elongation factor 1-alpha (TEF1-α) and rDNA 28S. Conclusion: The strong correlation between the M13 classification and the sequencing-based reference together with its higher resolution demonstrates its adequacy for the characterization of Fusarium populations.


Introducción. Fusarium es un grupo heterogéneo de hongos, difícil de clasificar y con una amplia gama de estilos de vida, que actúa como saprófito, parásito de plantas o patógeno de humanos y animales. La prevalencia de la fusariosis clínica y la falta de tratamientos han incrementado el interés en su diagnóstico preciso, lo que conlleva la caracterización molecular de las poblaciones. Objetivo. Comparar marcadores de genotipificación en la evaluación de la variabilidad genética e identificación de aislamientos clínicos de Fusarium. Materiales y métodos. Se evaluó la huella genética producida por dos cebadores aleatorios: M13, que amplifica una secuencia minisatélite, y (GACA)4, que corresponde a una secuencia repetitiva de ADN. Utilizando el índice discriminatorio de Hunter Gaston (HGDI), el análisis de varianza molecular (AMOVA) y una prueba de Mantel, se comparó la resolución de estos marcadores con métodos de genotipificación basados en secuenciación y PCR. Resultados. El mayor HGDI se asoció con el marcador M13, seguido de (GACA)4. Las pruebas AMOVA y Mantel mostraron correlación entre las clasificaciones obtenidas con M13 y la referencia basada en la secuenciación parcial del factor de elongación de transcripción 1-alfa (TEF1-α) y el ADNr 28S. Conclusión. La fuerte correlación entre la clasificación obtenida con M13 y el método de referencia, así como su alta resolución, demuestran su idoneidad para la caracterización de poblaciones de Fusarium.


Assuntos
Fusarium , Impressões Digitais de DNA , Bacteriófago M13 , Fusariose , Técnicas de Genotipagem , Elonguina , Genética Populacional
7.
PLoS Comput Biol ; 17(4): e1008890, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33798202

RESUMO

Protein-protein interaction networks are one of the most effective representations of cellular behavior. In order to build these models, high-throughput techniques are required. Next-generation interaction screening (NGIS) protocols that combine yeast two-hybrid (Y2H) with deep sequencing are promising approaches to generate interactome networks in any organism. However, challenges remain to mining reliable information from these screens and thus, limit its broader implementation. Here, we present a computational framework, designated Y2H-SCORES, for analyzing high-throughput Y2H screens. Y2H-SCORES considers key aspects of NGIS experimental design and important characteristics of the resulting data that distinguish it from RNA-seq expression datasets. Three quantitative ranking scores were implemented to identify interacting partners, comprising: 1) significant enrichment under selection for positive interactions, 2) degree of interaction specificity among multi-bait comparisons, and 3) selection of in-frame interactors. Using simulation and an empirical dataset, we provide a quantitative assessment to predict interacting partners under a wide range of experimental scenarios, facilitating independent confirmation by one-to-one bait-prey tests. Simulation of Y2H-NGIS enabled us to identify conditions that maximize detection of true interactors, which can be achieved with protocols such as prey library normalization, maintenance of larger culture volumes and replication of experimental treatments. Y2H-SCORES can be implemented in different yeast-based interaction screenings, with an equivalent or superior performance than existing methods. Proof-of-concept was demonstrated by discovery and validation of novel interactions between the barley nucleotide-binding leucine-rich repeat (NLR) immune receptor MLA6, and fourteen proteins, including those that function in signaling, transcriptional regulation, and intracellular trafficking.


Assuntos
Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Receptores Imunológicos/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Conjuntos de Dados como Assunto , Estudo de Prova de Conceito
8.
Genetics ; 217(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33724411

RESUMO

Barley (Hordeum vulgare L.) Mla (Mildew resistance locus a) and its nucleotide-binding, leucine-rich-repeat receptor (NLR) orthologs protect many cereal crops from diseases caused by fungal pathogens. However, large segments of the Mla pathway and its mechanisms remain unknown. To further characterize the molecular interactions required for NLR-based immunity, we used fast-neutron mutagenesis to screen for plants compromised in MLA-mediated response to the powdery mildew fungus, Blumeria graminis f. sp. hordei. One variant, m11526, contained a novel mutation, designated rar3 (required for Mla6 resistance3), that abolishes race-specific resistance conditioned by the Mla6, Mla7, and Mla12 alleles, but does not compromise immunity mediated by Mla1, Mla9, Mla10, and Mla13. This is analogous to, but unique from, the differential requirement of Mla alleles for the co-chaperone Rar1 (required for Mla12 resistance1). We used bulked-segregant-exome capture and fine mapping to delineate the causal mutation to an in-frame Lys-Leu deletion within the SGS domain of SGT1 (Suppressor of G-two allele of Skp1, Sgt1ΔKL308-309), the structural region that interacts with MLA proteins. In nature, mutations to Sgt1 usually cause lethal phenotypes, but here we pinpoint a unique modification that delineates its requirement for some disease resistances, while unaffecting others as well as normal cell processes. Moreover, the data indicate that the requirement of SGT1 for resistance signaling by NLRs can be delimited to single sites on the protein. Further study could distinguish the regions by which pathogen effectors and host proteins interact with SGT1, facilitating precise editing of effector incompatible variants.


Assuntos
Deleção de Genes , Hordeum/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Ascomicetos/patogenicidade , Hordeum/imunologia , Hordeum/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos
9.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33367498

RESUMO

Mapping protein-protein interactions at a proteome scale is critical to understanding how cellular signaling networks respond to stimuli. Since eukaryotic genomes encode thousands of proteins, testing their interactions one-by-one is a challenging prospect. High-throughput yeast-two hybrid (Y2H) assays that employ next-generation sequencing to interrogate complementary DNA (cDNA) libraries represent an alternative approach that optimizes scale, cost and effort. We present NGPINT, a robust and scalable software to identify all putative interactors of a protein using Y2H in batch culture. NGPINT combines diverse tools to align sequence reads to target genomes, reconstruct prey fragments and compute gene enrichment under reporter selection. Central to this pipeline is the identification of fusion reads containing sequences derived from both the Y2H expression plasmid and the cDNA of interest. To reduce false positives, these fusion reads are evaluated as to whether the cDNA fragment forms an in-frame translational fusion with the Y2H transcription factor. NGPINT successfully recognized 95% of interactions in simulated test runs. As proof of concept, NGPINT was tested using published data sets and it recognized all validated interactions. NGPINT can process interaction data from any biosystem with an available genome or transcriptome reference, thus facilitating the discovery of protein-protein interactions in model and non-model organisms.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mapas de Interação de Proteínas , Análise de Sequência de Proteína , Software , Técnicas do Sistema de Duplo-Híbrido , Humanos
10.
Front Plant Sci ; 11: 555071, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424874

RESUMO

Grafting is typically utilized to merge adapted seedling rootstocks with highly productive clonal scions. This process implies the interaction of multiple genomes to produce a unique tree phenotype. However, the interconnection of both genotypes obscures individual contributions to phenotypic variation (rootstock-mediated heritability), hampering tree breeding. Therefore, our goal was to quantify the inheritance of seedling rootstock effects on scion traits using avocado (Persea americana Mill.) cv. Hass as a model fruit tree. We characterized 240 diverse rootstocks from 8 avocado cv. Hass orchards with similar management in three regions of the province of Antioquia, northwest Andes of Colombia, using 13 microsatellite markers simple sequence repeats (SSRs). Parallel to this, we recorded 20 phenotypic traits (including morphological, biomass/reproductive, and fruit yield and quality traits) in the scions for 3 years (2015-2017). Relatedness among rootstocks was inferred through the genetic markers and inputted in a "genetic prediction" model to calculate narrow-sense heritabilities (h 2) on scion traits. We used three different randomization tests to highlight traits with consistently significant heritability estimates. This strategy allowed us to capture five traits with significant heritability values that ranged from 0.33 to 0.45 and model fits (r) that oscillated between 0.58 and 0.73 across orchards. The results showed significance in the rootstock effects for four complex harvest and quality traits (i.e., total number of fruits, number of fruits with exportation quality, and number of fruits discarded because of low weight or thrips damage), whereas the only morphological trait that had a significant heritability value was overall trunk height (an emergent property of the rootstock-scion interaction). These findings suggest the inheritance of rootstock effects, beyond root phenotype, on a surprisingly wide spectrum of scion traits in "Hass" avocado. They also reinforce the utility of polymorphic SSRs for relatedness reconstruction and genetic prediction of complex traits. This research is, up to date, the most cohesive evidence of narrow-sense inheritance of rootstock effects in a tropical fruit tree crop. Ultimately, our work highlights the importance of considering the rootstock-scion interaction to broaden the genetic basis of fruit tree breeding programs while enhancing our understanding of the consequences of grafting.

11.
PLoS Genet ; 13(3): e1006691, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28339459

RESUMO

Mutation screening of the breast cancer genes BRCA1 and BRCA2 identifies a large fraction of variants of uncertain clinical significance (VUS) whose functional and clinical interpretations pose a challenge for genomic medicine. Likewise, an increasing amount of evidence indicates that genetic variants can have deleterious effects on pre-mRNA splicing. Our goal was to investigate the impact on splicing of a set of reported variants of BRCA2 exons 17 and 18 to assess their role in hereditary breast cancer and to identify critical regulatory elements that may constitute hotspots for spliceogenic variants. A splicing reporter minigene with BRCA2 exons 14 to-20 (MGBR2_ex14-20) was constructed in the pSAD vector. Fifty-two candidate variants were selected with splicing prediction programs, introduced in MGBR2_ex14-20 by site-directed mutagenesis and assayed in triplicate in MCF-7 cells. Wild type MGBR2_ex14-20 produced a stable transcript of the expected size (1,806 nucleotides) and structure (V1-[BRCA2_exons_14-20]-V2). Functional mapping by microdeletions revealed essential sequences for exon recognition on the 3' end of exon 17 (c.7944-7973) and the 5' end of exon 18 (c.7979-7988, c.7999-8013). Thirty out of the 52 selected variants induced anomalous splicing in minigene assays with >16 different aberrant transcripts, where exon skipping was the most common event. A wide range of splicing motifs were affected including the canonical splice sites (15 variants), novel alternative sites (3 variants), the polypyrimidine tract (3 variants) and enhancers/silencers (9 variants). According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), 20 variants could be classified as pathogenic (c.7806-2A>G, c.7806-1G>A, c.7806-1G>T, c.7806-1_7806-2dup, c.7976+1G>A, c.7977-3_7978del, c.7977-2A>T, c.7977-1G>T, c.7977-1G>C, c.8009C>A, c.8331+1G>T and c.8331+2T>C) or likely pathogenic (c.7806-9T>G, c.7976G>C, c.7976G>A, c.7977-7C>G, c.7985C>G, c.8023A>G, c.8035G>T and c.8331G>A), accounting for 30.8% of all pathogenic/likely pathogenic variants of exons 17-18 at the BRCA Share database. The remaining 8 variants (c.7975A>G, c.7977-6T>G, c.7988A>T, c.7992T>A, c.8007A>G, c.8009C>T, c.8009C>G, and c.8072C>T) induced partial splicing anomalies with important ratios of the full-length transcript (≥70%), so that they remained classified as VUS. Aberrant splicing is therefore especially prevalent in BRCA2 exons 17 and 18 due to the presence of active ESEs involved in exon recognition. Splicing functional assays with minigenes are a valuable strategy for the initial characterization of the splicing outcomes and the subsequent clinical interpretation of variants of any disease-gene, although these results should be checked, whenever possible, against patient RNA.


Assuntos
Processamento Alternativo , Proteína BRCA2/genética , DNA de Neoplasias/genética , Éxons/genética , Mutação , Sequência de Bases , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Modelos Genéticos , Mutagênese Sítio-Dirigida , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA