Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396845

RESUMO

Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is related to risk factors such as viral hepatitis, alcohol intake, and non-alcoholic fatty liver disease (NAFLD). The constitutive activation of the PI3K/AKT signaling pathway is common in HCC and has essential involvement in tumor progression. The serine/threonine kinase AKT has several downstream substrates, which have been implicated in the regulation of cellular metabolism. However, the contribution of each of the three AKT isoforms, i.e., AKT1, AKT2 and AKT3, to HCC metabolism has not been comprehensively investigated. In this study, we analyzed the functional role of AKT1, AKT2 and AKT3 in HCC metabolism. The overexpression of activated AKT1, AKT2 and AKT3 isoforms in the human HCC cell lines Hep3B and Huh7 resulted in higher oxygen consumption rate (OCR), ATP production, maximal respiration and spare respiratory capacity in comparison to vector-transduced cells. Vice versa, lentiviral vector-mediated knockdowns of each AKT isoform reduced OCR in both cell lines. Reduced OCR rates observed in the three AKT isoform knockdowns were associated with reduced extracellular acidification rates (ECAR) and reduced lactate production in both analyzed cell lines. Mechanistically, the downregulation of OCR by AKT isoform knockdowns correlated with an increased phosphorylation of the pyruvate dehydrogenase on Ser232, which negatively regulates the activity of this crucial gatekeeper of mitochondrial respiration. In summary, our data indicate that each of the three AKT isoforms is able to upregulate OCR, ECAR and lactate production independently of each other in human HCC cells through the regulation of the pyruvate dehydrogenase.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Ácido Láctico/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Oxirredutases , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvatos
2.
J Invest Dermatol ; 144(4): 844-854.e2, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37832844

RESUMO

Psoriasis is an inflammatory skin disorder that is characterized by keratinocyte hyperproliferation in response to immune cell infiltration and cytokine secretion in the dermis. γδ T cells expressing the Vγ4 TCR chain are among the highest contributors of IL-17A, which is a major cytokine that drives a psoriasis flare, making Vγ4+ γδ T cells a suitable target to restrict psoriasis progression. In this study, we demonstrate that mitochondrial translation inhibition within Vγ4+ γδ T cells effectively reduced erythema, scaling, and skin thickening in a murine model of psoriatic disease. The antibiotic linezolid, which blocks mitochondrial translation, inhibited the production of mitochondrial-encoded protein cytochrome c oxidase in Vγ4+ γδ T cells and systemically reduced the frequencies of IL-17A+ Vγ4+ γδ T cells, effectively resolving IL-17A-dependent inflammation. Inhibiting mitochondrial translation could be a novel metabolic approach to interrupt IL-17A signaling in Vγ4+ T cells and reduce psoriasis-like skin pathophysiology.


Assuntos
Dermatite , Psoríase , Camundongos , Animais , Imiquimode/efeitos adversos , Interleucina-17/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele , Linfócitos T , Inflamação/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
3.
J Immunol ; 211(11): 1669-1679, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850963

RESUMO

T regulatory type 1 (Tr1) cells, which are defined by their regulatory function, lack of Foxp3, and high expression of IL-10, CD49b, and LAG-3, are known to be able to suppress Th1 and Th17 in the intestine. Th1 and Th17 cells are also the main drivers of crescentic glomerulonephritis (GN), the most severe form of renal autoimmune disease. However, whether Tr1 cells emerge in renal inflammation and, moreover, whether they exhibit regulatory function during GN have not been thoroughly investigated yet. To address these questions, we used a mouse model of experimental crescentic GN and double Foxp3mRFP IL-10eGFP reporter mice. We found that Foxp3neg IL-10-producing CD4+ T cells infiltrate the kidneys during GN progression. Using single-cell RNA sequencing, we could show that these cells express the core transcriptional factors characteristic of Tr1 cells. In line with this, Tr1 cells showed a strong suppressive activity ex vivo and were protective in experimental crescentic GN in vivo. Finally, we could also identify Tr1 cells in the kidneys of patients with antineutrophil cytoplasmic autoantibody-associated GN and define their transcriptional profile. Tr1 cells are currently used in several immune-mediated inflammatory diseases, such as T-cell therapy. Thus, our study provides proof of concept for Tr1 cell-based therapies in experimental GN.


Assuntos
Glomerulonefrite , Linfócitos T Reguladores , Humanos , Camundongos , Animais , Interleucina-10/metabolismo , Células Th17 , Rim/metabolismo , Fatores de Transcrição/metabolismo , Células Th1
4.
J Mol Med (Berl) ; 101(9): 1153-1166, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37594540

RESUMO

Psoriasis is a chronic inflammatory skin disease driven by the IL-23/IL-17 axis. It results from excessive activation of effector T cells, including T helper (Th) and cytotoxic T (Tc) cells, and is associated with dysfunctional regulatory T cells (Tregs). Acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme of fatty acid synthesis (FAS), directs cell fate decisions between Th17 and Tregs and thus could be a promising therapeutic target for psoriasis treatment. Here, we demonstrate that targeting ACC1 in T cells by genetic ablation ameliorates skin inflammation in an experimental model of psoriasis by limiting Th17, Tc17, Th1, and Tc1 cells in skin lesions and increasing the frequency of effector Tregs in skin-draining lymph nodes (LNs). KEY MESSAGES : ACC1 deficiency in T cells ameliorates psoriatic skin inflammation in mice. ACC1 deficiency in T cells reduces IL-17A-producing Th17/Tc17/dysfunctional Treg populations in psoriatic lesions. ACC1 deficiency in T cells restrains IFN-γ-producing Th1/Tc1 populations in psoriatic skin lesions and skin-draining LNs. ACC1 deficiency promotes activated CD44+CD25+ Tregs and effector CD62L-CD44+ Tregs under homeostasis and psoriatic conditions.


Assuntos
Psoríase , Pele , Animais , Camundongos , Linfócitos T Citotóxicos , Inflamação , Acetil-CoA Carboxilase
5.
Curr Opin Biotechnol ; 68: 202-212, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33517147

RESUMO

Dendritic cells (DCs) are key orchestrators of immunity and tolerance. It has become evident that DC function can be influenced by cellular metabolic programs. However, conclusions from early metabolic studies using in vitro GM-CSF DC cultures fail to correlate with bona fide DC populations. Here, we discuss the existing paradigms in the DC metabolism field, focusing on the limitations of the models utilized. Furthermore, we introduce alternative models to generate DCs in vitro that better emulate DCs found in vivo. Finally, we highlight new techniques to evaluate DC metabolism at the single-cell level. The combination of these two strategies could help advance the DC metabolism field towards a more physiological understanding, which is crucial for the development of effective DC-based therapies.


Assuntos
Células Dendríticas , Diferenciação Celular
6.
J Allergy Clin Immunol ; 147(1): 335-348.e11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407834

RESUMO

BACKGROUND: The cross-talk between the host and its microbiota plays a key role in the promotion of health. The production of metabolites such as polyamines by intestinal-resident bacteria is part of this symbiosis shaping host immunity. The polyamines putrescine, spermine, and spermidine are abundant within the gastrointestinal tract and might substantially contribute to gut immunity. OBJECTIVE: We aimed to characterize the polyamine spermidine as a modulator of T-cell differentiation and function. METHODS: Naive T cells were isolated from wild-type mice or cord blood from healthy donors and submitted to polarizing cytokines, with and without spermidine treatment, to evaluate CD4+ T-cell differentiation in vitro. Moreover, mice were subjected to oral supplementation of spermidine, or its precursor l-arginine, to assess the frequency and total numbers of regulatory T (Treg) cells in vivo. RESULTS: Spermidine modulates CD4+ T-cell differentiation in vitro, preferentially committing naive T cells to a regulatory phenotype. After spermidine treatment, activated T cells lacking the autophagy gene Atg5 fail to upregulate Foxp3 to the same extent as wild-type cells. These results indicate that spermidine's polarizing effect requires an intact autophagic machinery. Furthermore, dietary supplementation with spermidine promotes homeostatic differentiation of Treg cells within the gut and reduces pathology in a model of T-cell transfer-induced colitis. CONCLUSION: Altogether, our results highlight the beneficial effects of spermidine, or l-arginine, on gut immunity by promoting Treg cell development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Colite/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Espermidina/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
7.
Front Immunol ; 9: 1000, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867977

RESUMO

Brucellosis is an infectious disease elicited by bacteria of the genus Brucella. Platelets have been extensively described as mediators of hemostasis and responsible for maintaining vascular integrity. Nevertheless, they have been recently involved in the modulation of innate and adaptive immune responses. Although many interactions have been described between Brucella abortus and monocytes/macrophages, the role of platelets during monocyte/macrophage infection by these bacteria remained unknown. The aim of this study was to investigate the role of platelets in the immune response against B. abortus. We first focused on the possible interactions between B. abortus and platelets. Bacteria were able to directly interact with platelets. Moreover, this interaction triggered platelet activation, measured as fibrinogen binding and P-selectin expression. We further investigated whether platelets were involved in Brucella-mediated monocyte/macrophage early infection. The presence of platelets promoted the invasion of monocytes/macrophages by B. abortus. Moreover, platelets established complexes with infected monocytes/macrophages as a result of a carrier function elicited by platelets. We also evaluated the ability of platelets to modulate functional aspects of monocytes in the context of the infection. The presence of platelets during monocyte infection enhanced IL-1ß, TNF-α, IL-8, and MCP-1 secretion while it inhibited the secretion of IL-10. At the same time, platelets increased the expression of CD54 (ICAM-1) and CD40. Furthermore, we showed that soluble factors released by B. abortus-activated platelets, such as soluble CD40L, platelet factor 4, platelet-activating factor, and thromboxane A2, were involved in CD54 induction. Overall, our results indicate that platelets can directly sense and react to B. abortus presence and modulate B. abortus-mediated infection of monocytes/macrophages increasing their pro-inflammatory capacity, which could promote the resolution of the infection.


Assuntos
Plaquetas/citologia , Brucella abortus/fisiologia , Comunicação Celular/imunologia , Monócitos/imunologia , Brucella abortus/imunologia , Antígeno CD56/imunologia , Linhagem Celular , Células Cultivadas , Quimiocina CCL2/imunologia , Humanos , Interleucina-10/imunologia , Interleucina-8/imunologia , Monócitos/microbiologia , Células THP-1 , Fator de Necrose Tumoral alfa/imunologia
8.
Front Immunol ; 9: 471, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662482

RESUMO

Tuberculosis remains a major global health problem and efforts to develop a more effective vaccine have been unsuccessful so far. Targeting antigens (Ags) to dendritic cells (DCs) in vivo has emerged as a new promising vaccine strategy. In this approach, Ags are delivered directly to DCs via antibodies that bind to endocytic cell-surface receptors. Here, we explored DC-specific-ICAM3-grabbing-nonintegrin (DC-SIGN) targeting as a potential vaccine against tuberculosis. For this, we made use of the hSIGN mouse model that expresses human DC-SIGN under the control of the murine CD11c promoter. We show that in vitro and in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-CD40, the fungal cell wall component zymosan, and the cholera toxin-derived fusion protein CTA1-DD induces strong Ag-specific CD4+ T-cell responses. Improved anti-mycobacterial immunity was accompanied by increased frequencies of Ag-specific IFN-γ+ IL-2+ TNF-α+ polyfunctional CD4+ T cells in vaccinated mice compared with controls. Taken together, in this study we provide the proof of concept that the human DC-SIGN receptor can be efficiently exploited for vaccine purposes to promote immunity against mycobacterial infections.


Assuntos
Antígenos de Bactérias/imunologia , Moléculas de Adesão Celular/imunologia , Células Dendríticas/imunologia , Imunidade Celular , Lectinas Tipo C/imunologia , Mycobacterium tuberculosis/imunologia , Receptores de Superfície Celular/imunologia , Células Th1/imunologia , Vacinas contra a Tuberculose/imunologia , Animais , Citocinas/imunologia , Células Dendríticas/patologia , Humanos , Camundongos , Células Th1/patologia , Tuberculose/imunologia , Tuberculose/prevenção & controle
9.
PLoS Pathog ; 13(8): e1006527, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28767704

RESUMO

Despite eliciting a potent CD8+ T cell response, Brucella abortus is able to persist and establish a chronic infection inside its host. We have previously reported that the infection of human monocytes/macrophages with B. abortus inhibits the IFN-γ-induced MHC-I cell surface expression down-modulating cytotoxic CD8+ T cell responses. MHC-I down-modulation depends on bacterial viability and results from the capacity of B. abortus to retain the MHC-I molecules within the Golgi apparatus. Furthermore, we recently demonstrated that epidermal growth factor receptor (EGFR) pathway is involved in this phenomenon and that this is an early event during infection. However, the components and mechanisms whereby B. abortus is able to down-modulate MHC-I remained to be elucidated. In this study we demonstrated that the down-modulation of MHC-I expression is not mediated by well-known Brucella virulence factors but instead by B. abortus RNA, a PAMP associated to viability (vita-PAMP). Surprisingly, completely degraded RNA was also able to inhibit MHC-I expression to the same extent as intact RNA. Accordingly, B. abortus RNA and its degradation products were able to mimic the MHC-I intracellular retention within the Golgi apparatus observed upon infection. We further demonstrated that TLR8, a single-stranded RNA and RNA degradation products sensor, was involved in MHC-I inhibition. On the other hand, neutralization of the EGFR reversed the MHC-I inhibition, suggesting a connection between the TLR8 and EGFR pathways. Finally, B. abortus RNA-treated macrophages display diminished capacity of antigen presentation to CD8+ T cells. Overall, our results indicate that the vita-PAMP RNA as well as its degradation products constitute novel virulence factors whereby B. abortus, by a TLR8-dependent mechanism and through the EGFR pathway, inhibits the IFN-γ-induced MHC-I surface expression on human monocytes/macrophages. Thus, bacteria can hide within infected cells and avoid the immunological surveillance of cytotoxic CD8+ T cells.


Assuntos
Brucelose/imunologia , Receptores ErbB/imunologia , Evasão da Resposta Imune/imunologia , Monócitos/imunologia , RNA Bacteriano/imunologia , Receptor 8 Toll-Like/imunologia , Animais , Brucella abortus/imunologia , Apresentação Cruzada/imunologia , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Monócitos/microbiologia , Transdução de Sinais/imunologia
10.
J Leukoc Biol ; 101(3): 759-773, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27765819

RESUMO

Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4+ T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection.


Assuntos
Brucella abortus/fisiologia , Regulação para Baixo , Antígenos de Histocompatibilidade Classe II/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Interleucina-6/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Transativadores/antagonistas & inibidores , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Brucelose/imunologia , Brucelose/microbiologia , Brucelose/patologia , Catepsinas/metabolismo , Linhagem Celular , Antígenos HLA-DR/imunologia , Humanos , Interferon gama/metabolismo , Espaço Intracelular/metabolismo , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Modelos Biológicos , Monócitos/microbiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Fator de Transcrição STAT1/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica
11.
Immunol Cell Biol ; 95(4): 388-398, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811842

RESUMO

Brucella abortus is able to persist inside the host despite the development of potent CD8+ T-cell responses. We have recently reported the ability of B. abortus to inhibit the interferon-γ-induced major histocompatibility complex (MHC)-I cell surface expression on human monocytes. This phenomenon was due to the B. abortus-mediated retention of MHC-I molecules within the Golgi apparatus and was dependent on bacterial viability. However, the implications of bacterial virulence or replicative capacity and the signaling pathways remained unknown. Here we demonstrated that the B. abortus mutant strains RB51 and virB10- are able to inhibit MHC-I expression in the same manner as wild-type B. abortus, even though they are unable to persist inside human monocytes for a long period of time. Consistent with this, the phenomenon was triggered early in time and could be observed at 8 h postinfection. At 24 and 48 h, it was even stronger. Regarding the signaling pathway, targeting epidermal growth factor (EGF) receptor (EGFR), ErbB2 (HER2) or inhibition of tumor necrosis factor-α-converting enzyme, one of the enzymes which generates soluble EGF-like ligands, resulted in partial recovery of MHC-I surface expression. Moreover, recombinant EGF and transforming growth factor-α as well as the combination of both were also able to reproduce the B. abortus-induced MHC-I downmodulation. Finally, when infection was performed in the presence of an extracellular signal-regulated kinase 1/2 (Erk1/2) inhibitor, MHC-I surface expression was significantly recovered. Overall, these results describe how B. abortus evades CD8+ T-cell responses early during infection and exploits the EGFR-ERK signaling pathway to escape from the immune system and favor chronicity.


Assuntos
Brucella abortus/imunologia , Brucelose/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores ErbB/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Monócitos/imunologia , Animais , Brucella abortus/patogenicidade , Brucelose/microbiologia , Linfócitos T CD8-Positivos/microbiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos C57BL , Microbiologia , Transdução de Sinais , Células THP-1 , Regulação para Cima
12.
Infect Immun ; 84(1): 11-20, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26459511

RESUMO

Osteoarticular brucellosis is the most common localization of human active disease. Osteocytes are the most abundant cells of bone. They secrete factors that regulate the differentiation of both osteoblasts and osteoclasts during bone remodeling. The aim of this study is to determine if Brucella abortus infection modifies osteocyte function. Our results indicate that B. abortus infection induced matrix metalloproteinase 2 (MMP-2), receptor activator for NF-κB ligand (RANKL), proinflammatory cytokines, and keratinocyte chemoattractant (KC) secretion by osteocytes. In addition, supernatants from B. abortus-infected osteocytes induced bone marrow-derived monocytes (BMM) to undergo osteoclastogenesis. Using neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or osteoprotegerin (OPG), RANKL's decoy receptor, we determined that TNF-α and RANKL are involved in osteoclastogenesis induced by supernatants from B. abortus-infected osteocytes. Connexin 43 (Cx43) and the integrins E11/gp38, integrin-α, integrin-ß, and CD44 are involved in cell-cell interactions necessary for osteocyte survival. B. abortus infection inhibited the expression of Cx43 but did not modify the expression of integrins. Yet the expression of both Cx43 and integrins was inhibited by supernatants from B. abortus-infected macrophages. B. abortus infection was not capable of inducing osteocyte apoptosis. However, supernatants from B. abortus-infected macrophages induced osteocyte apoptosis in a dose-dependent manner. Taken together, our results indicate that B. abortus infection could alter osteocyte function, contributing to bone damage.


Assuntos
Brucella abortus/patogenicidade , Conexina 43/biossíntese , Integrinas/biossíntese , Osteócitos/metabolismo , Ligante RANK/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose , Brucelose/microbiologia , Brucelose/patologia , Diferenciação Celular , Linhagem Celular , Quimiocina CXCL1/metabolismo , Macrófagos/microbiologia , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Osteoclastos/citologia , Osteócitos/microbiologia , Osteoprotegerina/imunologia , Fator de Necrose Tumoral alfa/imunologia
13.
Infect Immun ; 83(5): 1973-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733519

RESUMO

Human brucellosis is a protean disease with a diversity of clinical signs and symptoms resulting from infection with Brucella species. Recent reports suggest a cross-regulation between adrenal steroids (cortisol and dehydroepiandrosterone [DHEA]) and the immune system. Monocytes and macrophages are the main replication niche for Brucella. Therefore, we investigated the role of adrenal hormones on the modulation of the immune response mediated by macrophages in B. abortus infection. Cortisol treatment during B. abortus infection significantly inhibits cytokine, chemokine, and MMP-9 secretion. In contrast, DHEA treatment had no effect. However, DHEA treatment increases the expression of costimulatory molecules (CD40, CD86), the adhesion molecule CD54, and major histocompatibility complex class I (MHC-I) and MHC-II expression on the surface of B. abortus-infected monocytes. It is known that B. abortus infection inhibits MHC-I and MHC-II expression induced by gamma interferon (IFN-γ) treatment. DHEA reverses B. abortus downmodulation of the MHC-I and -II expression induced by IFN-γ. Taken together, our data indicate that DHEA immune intervention may positively affect monocyte activity during B. abortus infection.


Assuntos
Brucella abortus/imunologia , Brucelose/imunologia , Citocinas/metabolismo , Desidroepiandrosterona/metabolismo , Hidrocortisona/metabolismo , Fatores Imunológicos/metabolismo , Monócitos/imunologia , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/microbiologia
14.
J Neuroinflammation ; 10: 47, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23587438

RESUMO

BACKGROUND: Central nervous system (CNS) invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. We have recently demonstrated that B. abortus infects microglia and astrocytes, eliciting the production of a variety of pro-inflammatory cytokines which contribute to CNS damage. Matrix metalloproteinases (MMP) have been implicated in inflammatory tissue destruction in a range of pathological situations in the CNS. Increased MMP secretion is induced by pro-inflammatory cytokines in a variety of CNS diseases characterized by tissue-destructive pathology. METHODS: In this study, the molecular mechanisms that regulate MMP secretion from Brucella-infected astrocytes in vitro were investigated. MMP-9 was evaluated in culture supernatants by ELISA, zymography and gelatinolytic activity. Involvement of mitogen-activated protein kinases (MAPK) signaling pathways was evaluated by Western blot and using specific inhibitors. The role of TNF-α was evaluated by ELISA and by assays with neutralizing antibodies. RESULTS: B. abortus infection induced the secretion of MMP-9 from murine astrocytes in a dose-dependent fashion. The phenomenon was independent of bacterial viability and was recapitulated by L-Omp19, a B. abortus lipoprotein model, but not its LPS. B. abortus and L-Omp19 readily activated p38 and Erk1/2 MAPK, thus enlisting these pathways among the kinase pathways that the bacteria may address as they invade astrocytes. Inhibition of p38 or Erk1/2 significantly diminished MMP-9 secretion, and totally abrogated production of this MMP when both MAPK pathways were inhibited simultaneously. A concomitant abrogation of B. abortus- and L-Omp19-induced TNF-α production was observed when p38 and Erk1/2 pathways were inhibited, indicating that TNF-α could be implicated in MMP-9 secretion. MMP-9 secretion induced by B. abortus or L-Omp19 was completely abrogated when experiments were conducted in the presence of a TNF-α neutralizing antibody. MMP-9 activity was detected in cerebrospinal fluid (CSF) samples from patients suffering from neurobrucellosis. CONCLUSIONS: Our results indicate that the inflammatory response elicited by B. abortus in astrocytes would lead to the production of MMP-9 and that MAPK may play a role in this phenomenon. MAPK inhibition may thus be considered as a strategy to control inflammation and CNS damage in neurobrucellosis.


Assuntos
Brucella abortus , Brucelose/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/fisiologia , Animais , Anticorpos Bloqueadores/farmacologia , Antígenos de Bactérias/fisiologia , Astrócitos/metabolismo , Astrócitos/microbiologia , Astrócitos/fisiologia , Proteínas da Membrana Bacteriana Externa/fisiologia , Citocinas/metabolismo , Gelatinases/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Lipopolissacarídeos/farmacologia , Lipoproteínas/farmacologia , Lipoproteínas/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Cultura Primária de Células , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
15.
Cell Microbiol ; 15(4): 487-502, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23107169

RESUMO

Brucella abortus elicits a vigorous Th1 immune response which activates cytotoxic T lymphocytes. However, B. abortus persists in its hosts in the presence of CD8(+) T cells, establishing a chronic infection. Here, we report that B. abortus infection of human monocytes/macrophages inhibited the IFN-γ-induced MHC-I cell surface expression. This phenomenon was dependent on metabolically active viable bacteria. MHC-I down-modulation correlated with the development of diminished CD8(+) cytotoxic T cell response as evidenced by the reduced expression of the activation marker CD107a on CD8(+) T lymphocytes and a diminished percentage of IFN-γ-producing CD8(+) T cells. Inhibition of MHC-I expression was not due to changes in protein synthesis. Rather, we observed that upon B. abortus infection MHC-I molecules were retained within the Golgi apparatus. Overall, these results describe a novel mechanism based on the intracellular sequestration of MHC-I molecules whereby B. abortus would avoid CD8(+) cytotoxic T cell responses, evading their immunological surveillance.


Assuntos
Brucella abortus/imunologia , Brucella abortus/fisiologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Evasão da Resposta Imune , Macrófagos/imunologia , Macrófagos/microbiologia , Células Cultivadas , Complexo de Golgi/química , Humanos , Interferon gama/metabolismo , Transporte Proteico
16.
Microbes Infect ; 14(7-8): 639-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22387699

RESUMO

Immune evasion is essential for Brucella abortus to survive in the face of robust adaptive CD4+ T cell response. We have previously demonstrated that B. abortus can indirectly inhibit CD4+ T cells by down-regulating MHC-II expression and antigen presentation on macrophages. However, whether B. abortus is able to directly interfere with T lymphocytes is not known. We report here that B. abortus induces apoptosis of human T lymphocytes, even though invasion of T lymphocytes was low and non-replicative. The ability of heat-killed B. abortus to reproduce the same phenomenon suggested that there was a bacterial structural component involved. We demonstrated that a prototypical B. abortus outer membrane lipoprotein (l-Omp19), but not its unlipidated form, induced T lymphocyte apoptosis. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also induced an increase in T lymphocyte cell death, indicating that the structural component implicated in the phenomenon could be any B. abortus lipoprotein. B. abortus-induced T lymphocyte apoptosis was dependent on the secretion of TNF-α since pre-incubation of T lymphocytes with anti-TNF-α mAb inhibited the apoptosis of the cells. Overall, these results represent a new mechanism whereby B. abortus by directly inhibiting T cell-mediated responses may evade adaptive immune responses.


Assuntos
Apoptose , Proteínas da Membrana Bacteriana Externa/imunologia , Brucella abortus/patogenicidade , Lipoproteínas/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Fator de Necrose Tumoral alfa/biossíntese , Brucelose/microbiologia , Dinoprostona/biossíntese , Humanos , Linfócitos T/microbiologia
17.
Microbes Infect ; 13(3): 239-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21070860

RESUMO

The strategies that allow Brucella abortus to persist for years inside macrophages subverting host immune responses are not completely understood. Immunity against this bacterium relies on the capacity of IFN-γ to activate macrophages, endowing them with the ability to destroy intracellular bacteria. We report here that infection with B. abortus down-modulates the expression of the type I receptor for the Fc portion of IgG (FcγRI, CD64) and FcγRI-restricted phagocytosis regulated by IFN-γ in human monocytes/macrophages. Both phenomena were not dependent on bacterial viability, since they were also induced by heat-killed B. abortus (HKBA), suggesting that they were elicited by a structural bacterial component. Accordingly, a prototypical B. abortus lipoprotein (L-Omp19), but not its unlipidated form, inhibited both CD64 expression and FcγRI-restricted phagocytosis regulated by IFN-γ. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited CD64 expression, indicating that any Brucella lipoprotein could down-modulate CD64 expression and FcγRI-restricted phagocytosis. Pre-incubation of monocytes/macrophages with anti-TLR2 mAb blocked the inhibition of the CD64 expression mediated by HKBA and L-Omp19. These results, together with our previous observations establish that B. abortus utilizes its lipoproteins to inhibit the monocytes/macrophages activation mediated by IFN-γ and to subvert host immunonological responses.


Assuntos
Brucella abortus/fisiologia , Interferon gama/antagonistas & inibidores , Macrófagos/imunologia , Monócitos/imunologia , Receptores de IgG/biossíntese , Receptor 2 Toll-Like/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella abortus/química , Brucella abortus/metabolismo , Células Cultivadas , Citometria de Fluxo , Interações Hospedeiro-Patógeno , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Lipoproteínas/metabolismo , Macrófagos/microbiologia , Monócitos/microbiologia , Fagocitose/fisiologia , Receptores de IgG/antagonistas & inibidores , Receptores de IgG/metabolismo , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA