Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38132810

RESUMO

Male survivors of childhood cancer have been known to be afflicted with azoospermia. To combat this, the isolation and purification of spermatogonial stem cells (SSCs) are crucial. Implementing scaffolds that emulate the extracellular matrix environment is vital for promoting the regeneration and proliferation of SSCs. This research aimed to evaluate the efficiency of nanocomposite scaffolds based on alginate, chitosan, and graphene oxide (GO) in facilitating SSCs proliferation. To analyze the cytotoxicity of the scaffolds, an MTT assay was conducted at 1, 3, and 7 days, and the sample containing 30 µg/mL of GO (ALGCS/GO30) exhibited the most favorable results, indicating its optimal performance. The identity of the cells was confirmed using flow cytometry with C-Kit and GFRα1 markers. The scaffolds were subjected to various analyses to characterize their properties. FTIR was employed to assess the chemical structure, XRD to examine crystallinity, and SEM to visualize the morphology of the scaffolds. To evaluate the proliferation of SSCs, qRT-PCR was used. The study's results demonstrated that the ALGCS/GO30 nanocomposite scaffold exhibited biocompatibility and facilitated the attachment and proliferation of SSCs. Notably, the scaffold displayed a significant increase in proliferation markers compared to the control group, indicating its ability to support SSC growth. The expression level of the PLZF protein was assessed using the Immunocytochemistry method. The observations confirmed the qRT-PCR results, which indicated that the nanocomposite scaffolds had higher levels of PLZF protein expression than scaffolds without GO. The biocompatible ALGCS/GO30 is a promising alternative for promoting SSC proliferation in in vitro applications.

2.
Bioengineering (Basel) ; 9(11)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36354517

RESUMO

Heparin, usually isolated from porcine intestinal mucosa, is an active pharmaceutical ingredient of great material value. Traditionally, diverse types of commercial resins were employed as an adsorbent for heparin retrieval from biological samples. However, more recent years have encouraged the advent of new cost-effective adsorbents to achieve enhanced heparin retrieval. Inexpensive cationic ammonium-functionalized silica gels, monodispersed with larger surface area, porosity, and higher thermal stability, were chosen to evaluate the heparin recovery yield from porcine intestinal mucosa. We demonstrated that higher positively charged and less bulky quaternary modified silica gel (e.g., QDASi) could adsorb ~28% (14.7 mg g-1) heparin from the real samples. In addition, we also determined suitable surface conditions for the heparin molecule adsorption by mechanistic studies and optimized different variables, such as pH, temperature, etc., to improve the heparin adsorption. This is going to be the first reported study on the usage of quaternary amine-functionalized silica gel for HEP uptake.

3.
Molecules ; 27(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35268771

RESUMO

Heparin is one of the most valuable active pharmaceutical ingredients, and it is generally isolated from porcine intestinal mucosa. Traditionally, different types of commercial resins are employed as an adsorbent for heparin uptake; however, using new, less expensive adsorbents has attracted more interest in the past few years to enhance the heparin recovery. Zeolite imidazolate framework-8 (ZIF-8), as a metal-organic framework (MOF) with a high surface area, porosity, and good stability at high temperatures, was selected to examine the heparin recovery. In this research, we demonstrate that ZIF-8 can recover up to ~70% (37 mg g-1) of heparin from porcine intestinal mucosa. A mechanistic study through kinetic and thermodynamic models on the adsorption revealed appropriate surface conditions for the adsorption of heparin molecules. The effect of different variables such as pH and temperature on heparin adsorption was also studied to optimize the recovery. This study is the first to investigate the usage of MOFs for heparin uptake.


Assuntos
Poluentes Químicos da Água , Zeolitas , Adsorção , Animais , Heparina , Mucosa Intestinal/química , Suínos , Poluentes Químicos da Água/química , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA