RESUMO
Near infrared (NIR) spectroscopy is a valuable analytical technique for monitoring chemical composition of powder blends in continuous pharmaceutical processes. However, the variation in density captured by NIR during spectral collection of dynamic powder streams at different flow rates often reduces the performance and robustness of NIR models. To overcome this challenge, quantitative NIR measurements are commonly collected across all potential manufacturing conditions, including multiple flow rates to account for the physical variations. The utility of this approach is limited by the considerable quantity of resources required to run and analyze an extensive calibration design at variable flow rates in a continuous manufacturing (CM) process. It is hypothesized that the primary variation introduced to NIR spectra from changing flow rates is a change in the density of the powder from which NIR spectra are collected. In this work, powder stream density was used as an efficient surrogate for flow rate in developing a quantitative NIR method with enhanced robustness against process rate variation. A density design space of two process parameters was generated to determine the conditions required to encompass the apparent density and spectral variance from increases in process rate. This apparent density variance was included in calibration at a constant low flow rate to enable the development of a density-insensitive NIR quantitative model with limited consumption of materials. The density-insensitive NIR model demonstrated comparable prediction performance and flow rate robustness to a traditional NIR model including flow rate variation ("gold standard" model) when applied to monitoring drug content in continuous runs at varying flow rates. The proposed platform for the development of in-line density-insensitive NIR methods is expected to facilitate robust analytical model performance across variable continuous manufacturing production scales while improving the material efficiency over traditional robust modeling approaches for calibration development.
Assuntos
Rios , Espectroscopia de Luz Próxima ao Infravermelho , Composição de Medicamentos/métodos , Pós/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Calibragem , Tecnologia Farmacêutica/métodos , Comprimidos/químicaRESUMO
Near-infrared (NIR) spectroscopy is a powerful process analytical tool for monitoring chemical constituents in continuous pharmaceutical processes. However, the density variation introduced when quantitative NIR measurements are performed on powder streams at different flow rates is a potential source of a lack of model robustness. Since different flow rates are often required to meet the production requirements (e.g., during scale-up) of a continuous process, the development of efficient strategies to characterize, understand, and mitigate the impact of powder density on NIR measurements is highly desirable. This study focused on assessing the effect of powder physical variation on NIR by enabling the in-line characterization of powder stream density in a simulated continuous system. The in-line measurements of powder stream density were facilitated through a unique analytical interface to a flowing process. Powder streams delivered at various design levels of flow rate and tube angle were monitored simultaneously by NIR diffuse reflectance spectroscopy, live imaging, and dynamic mass characterization. Statistical analysis and multivariate modeling confirmed powder density as a significant source of spectral variability due to flow rate. Besides providing broader process understanding, results elucidated potential mitigation strategies to facilitate effective continuous process scale-up while ensuring NIR model robustness against density.
Assuntos
Química Farmacêutica , Rios , Química Farmacêutica/métodos , Pós/química , Calibragem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tecnologia Farmacêutica/métodosRESUMO
Process analytical technology (PAT) is an essential tool within pharmaceutical manufacturing to ensure consistent quality and maintain process control. Near-infrared (NIR) spectroscopy is one of the most popular PAT techniques, particularly for monitoring active pharmaceutical ingredient (API) concentrations. To interpret the spectral outputs of NIR spectroscopy, advanced multivariate models are required. Calibration-free models such as iterative optimization technology (IOT) algorithms are increasingly of interest, due primarily to their reduced material and time burdens. Variable/wavelength selection is a common method to improve prediction performance and robustness for IOT by focusing on spectral regions with the most relevant information. However, currently proposed wavelength selection approaches rely on training sets for optimization, therefore reducing or removing the advantages of IOT over empirical calibration-dependent models. In this work, a true calibration-free wavelength selection method is proposed based on measuring the difference between individual wavelengths of a mixture spectra and the net analyte signals via a wavelength angle mapper (WAM). An extension of the WAM utilizing a spectral window of wavelength instead of individual wavelengths, called SWAM, was also developed. However, the SWAM method does require a small training set to optimize wavelength selection parameters. The WAM and SWAM methods showed similar prediction performance for API in pharmaceutical powder blends when compared against other calibration-dependent models and the base IOT algorithm.