Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 85(10): 103507, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25362393

RESUMO

Measurements of the return-current flowing through a solid target irradiated with the sub-nanosecond kJ-class Prague Asterix Laser System is reported. A new inductive target probe was developed which allows us measuring the target current derivative in a kA/ns range. The dependences of the target current on the laser pulse energy for cooper, graphite, and polyethylene targets are reported. The experiment shows that the target current is proportional to the deposited laser energy and is strongly affected by the shot-to-shot fluctuations. The corresponding maximum target charge exceeded a value of 10 µC. A return-current dependence of the electromagnetic pulse produced by the laser-target interaction is presented.

2.
Rev Sci Instrum ; 85(1): 013302, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517754

RESUMO

A new type of Faraday cup, capable of detecting high energy charged particles produced in a high intensity laser-matter interaction environment, has recently been developed and demonstrated as a real-time detector based on the time-of-flight technique. An array of these Faraday cups was designed and constructed to cover different observation angles with respect to the target normal direction. Thus, it allows reconstruction of the spatial distribution of ion current density in the subcritical plasma region and the ability to visualise its time evolution through time-of-flight measurements, which cannot be achieved with standard laser optical interferometry. This is a unique method for two-dimensional visualisation of ion currents from laser-generated plasmas. A technical description of the new type of Faraday cup is introduced along with an ad hoc data analysis procedure. Experimental results obtained during campaigns at the Petawatt High-Energy Laser for Heavy Ion Experiments (GSI, Darmstadt) and at the Prague Asterix Laser System (AS CR) are presented. Advantages and limitations of the used diagnostic system are discussed.

3.
Radiat Prot Dosimetry ; 161(1-4): 343-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24563524

RESUMO

State-of-the-art laser systems are able to generate ionising radiation of significantly high energies by focusing ultra-short and intense pulses onto targets. Thus, measures ensuring the radiation protection of both working personnel and the general public are required. However, commercially available dosemeters are primarily designed for measurement in continuous fields. Therefore, it is important to explore their response to very short pulses. In this study, the responses of dosemeters in a radiation field generated by iodine high-power and Ti:Sapphire laser systems are examined in proton and electron acceleration experiments. Within these experiments, electron bunches of femtosecond pulse duration and 100-MeV energy and proton bunches with sub-nanosecond pulse duration and energy of several megaelectronvolts were generated in single-shot regimes. Responses of typical detectors (TLD, films and electronic personal dosemeter) were analysed and compared. Further, a first attempt was carried out to characterise the radiation field generated by TW-class laser systems.


Assuntos
Lasers , Exposição Ocupacional/prevenção & controle , Radiometria/instrumentação , Radiometria/métodos , Óxido de Alumínio/química , Anisotropia , Eletrônica , Elétrons , Desenho de Equipamento , Humanos , Iodo , Exposição Ocupacional/análise , Prótons , Doses de Radiação , Proteção Radiológica/instrumentação , Radiação Ionizante , Silício , Dosimetria Termoluminescente/instrumentação , Dosimetria Termoluminescente/métodos , Titânio/química
4.
Phys Rev Lett ; 111(18): 185001, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24237527

RESUMO

The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, is experimentally investigated. Ultrahigh contrast (~10(12)) pulses allow us to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultrahigh intensity >10(19) W/cm(2). A maximum increase by a factor of 2.5 of the cutoff energy of protons produced by target normal sheath acceleration is observed with respect to plane targets, around the incidence angle expected for the resonant excitation of surface waves. A significant enhancement is also observed for small angles of incidence, out of resonance.

5.
Rev Sci Instrum ; 83(2): 02B111, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380268

RESUMO

A 10(16) W∕cm(2) Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD(2) targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD(2) targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

6.
Rev Sci Instrum ; 83(2): 02B302, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380281

RESUMO

The generation of fast highly charged metal ions with the use of the sub-nanosecond Prague Asterix Laser System, operated at a fundamental wavelength of 1315 nm, is reported. Particular attention is paid to shot-to-shot reproducibility in the ion emission. Au and Pd targets were exposed to intensities up to 5 × 10(16) W∕cm(2). Above the laser intensity threshold of ∼3 × 10(14) W∕cm(2) the plasma is generated in a form of irregular bursts. The maximum energy of protons constituting the leading edge of the fastest burst reaches a value up to 1 MeV. The fast ions in the following bursts have energy gradually decreasing with the increasing burst number, namely, from a value of about 0.5 MeV∕charge regardless of the atomic number and mass of the ionized species.

7.
Rev Sci Instrum ; 83(2): 02B307, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380286

RESUMO

An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10(16)-10(19) W∕cm(2). The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

8.
Rev Sci Instrum ; 83(2): 02B315, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380294

RESUMO

The iodine laser at PALS Laboratory in Prague, operating at 1315 nm fundamental harmonics and at 300 ps FWHM pulse length, is employed to irradiate thin hydrogenated targets placed in vacuum at intensities on the order of 10(16) W∕cm(2). The laser-generated plasma is investigated in terms of proton and ion emission in the forward and backward directions. The time-of-flight technique, using ion collectors and semiconductor detectors, is used to measure the ion currents and the corresponding velocities and energies. Thomson parabola spectrometer is employed to separate the contribution of the ion emission from single laser shots. A particular attention is given to the proton production in terms of the maximum energy, emission yield, and angular distribution as a function of the laser energy, focal position, target thickness, and composition. Metallic and polymeric targets allow to generate protons with large energy range and different yield, depending on the laser, target composition, and target geometry properties.


Assuntos
Hidrogênio/química , Lasers , Prótons , Radiometria/instrumentação , Gases em Plasma/química , Análise Espectral
9.
Rev Sci Instrum ; 83(2): 02B911, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380343

RESUMO

In this work, the characteristics of laser plasma produced by ablation of pure and doped targets are studied. An excimer KrF laser was used to induce ablation. Pure Cu, Cu with 2% of Be, and Cu with 4% of Sn targets were ablated to evaluate the influence of these admixture on the emission of Cu ions. It was observed that the emission of ions exhibited a higher gain from the Cu∕Be and Cu∕Sn targets with respect to the pure Cu one. We also performed studied of ion velocity and charge angular distribution.

10.
Rev Sci Instrum ; 81(11): 113503, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21133467

RESUMO

The spectra of neutrons outside the plasma focus device PF-1000 with an upper energy limit of ≈1 MJ was measured using a Bonner spheres spectrometer in which the active detector of thermal neutrons was replaced by nine thermoluminescent chips. As an a priori spectrum for the unfolding procedure, the spectrum calculated by means of the Monte Carlo method with a simplified model of the discharge chamber was selected. Differences between unfolded and calculated spectra are discussed with respect to properties of the discharge vessel and the laboratory layout.

11.
Rev Sci Instrum ; 81(2): 02A504, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192359

RESUMO

Emission of carbon currents reaching values up to 2 A/cm(2) at a distance of 1 m from the laser ion source driven by the subnanosecond Prague Asterix Laser System operated at a fundamental wavelength of 1315 nm is reported. Graphite targets were exposed to intensities up to 5x10(16) W/cm(2) varying both the laser energy and the position of the laser beam focus with respect to the target surface. The maximum energy gain of carbon ions was approximately = 1 MeV/u. At high laser intensities the shape of time-of-flight spectra is also formed by plasma outbursts, whose growth correlates with the oscillatory self-focusing of the laser beam.

12.
Rev Sci Instrum ; 81(2): 02A506, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192361

RESUMO

Ultrafast plasma light ion streams have been produced using the 300 ps, kJ-class iodine laser, operating at PALS Centre in Prague. Ion detection was performed through standard ion collectors (IC) in time-of-flight configuration (TOF), shielded by thin metallic absorbers. This new diagnostics technique has been theoretically studied and experimentally tested in order to cut the long photopeak contribution and to analyze the ultrafast particle signal. Processing the obtained experimental IC-TOF data, including deconvolution processes of the TOF signals, UV/soft-x-ray photopeak absorption, and ion transmission calculations for different metallic filters, is shown. Mainly amorphous carbon (graphite) targets have been irradiated in order to limit the maximum number of ion charge states and to focus our study on demonstrating the validity of the proposed investigation technique. Maximum ion energy and acceleration gradient estimations as a function of the laser energy and focal spot diameter are reported.

13.
Rev Sci Instrum ; 79(2 Pt 2): 02C715, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315268

RESUMO

Results of recent studies on highly charged Au ion generation, using the intense long pulses of the PALS high power iodine laser (lambda=1.315 microm, E(L)=800 J400 ps), operating under variable experimental conditions (1omega, 3omega, varying target thickness and changing focus positions), are presented. Both the ion collectors and the ion electrostatic analyzers were applied for the identification of ions in a large distance from the target. The time-of-flight collector signals were treated by a means of peak deconvolution assuming a shifted Maxwell-Boltzmann form of the constituent ion current peaks. Attention was paid to the influence of pulse precursor, which becomes evident, especially, if using thinner targets and 1omega. The results for 3omega point to the presence of several groups of ions with the highest recorded charge state Au(53+).

14.
Opt Express ; 15(10): 6036-43, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19546907

RESUMO

A linear accelerator based source of coherent radiation, FLASH (Free-electron LASer in Hamburg) provides ultra-intense femtosecond radiation pulses at wavelengths from the extreme ultraviolet (XUV; lambda<100nm) to the soft X-ray (SXR; lambda<30nm) spectral regions. 25-fs pulses of 32-nm FLASH radiation were used to determine the ablation parameters of PMMA - poly (methyl methacrylate). Under these irradiation conditions the attenuation length and ablation threshold were found to be (56.9+/-7.5) nm and approximately 2 mJ*cm(-2), respectively. For a second wavelength of 21.7 nm, the PMMA ablation was utilized to image the transverse intensity distribution within the focused beam at mum resolution by a method developed here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA