Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Microbiol Resour Announc ; 10(7)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602729

RESUMO

We report a de novo-assembled draft genome sequence of the Indian Staphylococcus aureus sequence type 88 (ST88) strain LVP-7, isolated from an ocular infection. The genome harbors a Panton-Valentine leukocidin phage, a type V staphylococcal cassette chromosome mec element, the delta-hemolysin-converting Newman phage ΦNM3, and the pathogenicity island SaPI3, encoding the superantigen enterotoxin B.

2.
Sci Rep ; 11(1): 852, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441725

RESUMO

Plasmodium falciparum has evolved resistance to almost all front-line drugs including artemisinin, which threatens malaria control and elimination strategies. Oxidative stress and protein damage responses have emerged as key players in the generation of artemisinin resistance. In this study, we show that PfGCN5, a histone acetyltransferase, binds to the stress-responsive genes in a poised state and regulates their expression under stress conditions. Furthermore, we show that upon artemisinin exposure, genome-wide binding sites for PfGCN5 are increased and it is directly associated with the genes implicated in artemisinin resistance generation like BiP and TRiC chaperone. Interestingly, expression of genes bound by PfGCN5 was found to be upregulated during stress conditions. Moreover, inhibition of PfGCN5 in artemisinin-resistant parasites increases the sensitivity of the parasites to artemisinin treatment indicating its role in drug resistance generation. Together, these findings elucidate the role of PfGCN5 as a global chromatin regulator of stress-responses with a potential role in modulating artemisinin drug resistance and identify PfGCN5 as an important target against artemisinin-resistant parasites.


Assuntos
Histona Acetiltransferases/genética , Plasmodium falciparum/genética , Estresse Fisiológico/genética , Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Resistência a Medicamentos/fisiologia , Histona Acetiltransferases/metabolismo , Humanos , Malária/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
3.
Nucleic Acids Res ; 48(1): 184-199, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31777939

RESUMO

DNA cytosine modifications are key epigenetic regulators of cellular processes in mammalian cells, with their misregulation leading to varied disease states. In the human malaria parasite Plasmodium falciparum, a unicellular eukaryotic pathogen, little is known about the predominant cytosine modifications, cytosine methylation (5mC) and hydroxymethylation (5hmC). Here, we report the first identification of a hydroxymethylcytosine-like (5hmC-like) modification in P. falciparum asexual blood stages using a suite of biochemical methods. In contrast to mammalian cells, we report 5hmC-like levels in the P. falciparum genome of 0.2-0.4%, which are significantly higher than the methylated cytosine (mC) levels of 0.01-0.05%. Immunoprecipitation of hydroxymethylated DNA followed by next generation sequencing (hmeDIP-seq) revealed that 5hmC-like modifications are enriched in gene bodies with minimal dynamic changes during asexual development. Moreover, levels of the 5hmC-like base in gene bodies positively correlated to transcript levels, with more than 2000 genes stably marked with this modification throughout asexual development. Our work highlights the existence of a new predominant cytosine DNA modification pathway in P. falciparum and opens up exciting avenues for gene regulation research and the development of antimalarials.


Assuntos
5-Metilcitosina/análogos & derivados , DNA de Protozoário/genética , Epigênese Genética , Genoma de Protozoário , Plasmodium falciparum/genética , RNA Mensageiro/genética , 5-Metilcitosina/metabolismo , Citosina/metabolismo , Metilação de DNA , DNA de Protozoário/metabolismo , Eritrócitos/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hidroxilação , Plasmodium falciparum/metabolismo , RNA Mensageiro/metabolismo
4.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833341

RESUMO

Post-translational modifications of histone H3 N-terminal tails are key epigenetic regulators of virulence gene expression and sexual commitment in the human malaria parasite Plasmodium falciparum Here, we identify proteolytic clipping of the N-terminal tail of nucleosome-associated histone H3 at amino acid position 21 as a new chromatin modification. A cathepsin C-like proteolytic clipping activity is observed in nuclear parasite extracts. Notably, an ectopically expressed version of clipped histone H3, PfH3p-HA, is targeted to the nucleus and integrates into mononucleosomes. Furthermore, chromatin immunoprecipitation and next-generation sequencing analysis identified PfH3p-HA as being highly enriched in the upstream region of six genes that play a key role in DNA replication and repair: In these genes, PfH3p-HA demarcates a specific 1.5 kb chromatin island adjacent to the open reading frame. Our results indicate that, in P. falciparum, the process of histone clipping may precede chromatin integration hinting at preferential targeting of pre-assembled PfH3p-containing nucleosomes to specific genomic regions. The discovery of a protease-directed mode of chromatin organization in P. falciparum opens up new avenues to develop new anti-malarials.


Assuntos
Replicação do DNA , Histonas/metabolismo , Malária Falciparum/parasitologia , Nucleossomos/metabolismo , Plasmodium falciparum/fisiologia , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Imunoprecipitação da Cromatina , Expressão Ectópica do Gene , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Histonas/química , Histonas/genética , Humanos , Inibidores de Proteases/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise/efeitos dos fármacos
5.
Elife ; 72018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29809151

RESUMO

The endoplasmic reticulum (ER) supports biosynthesis of proteins with diverse transmembrane domain (TMD) lengths and hydrophobicity. Features in transmembrane domains such as charged residues in ion channels are often functionally important, but could pose a challenge during cotranslational membrane insertion and folding. Our systematic proteomic approaches in both yeast and human cells revealed that the ER membrane protein complex (EMC) binds to and promotes the biogenesis of a range of multipass transmembrane proteins, with a particular enrichment for transporters. Proximity-specific ribosome profiling demonstrates that the EMC engages clients cotranslationally and immediately following clusters of TMDs enriched for charged residues. The EMC can remain associated after completion of translation, which both protects clients from premature degradation and allows recruitment of substrate-specific and general chaperones. Thus, the EMC broadly enables the biogenesis of multipass transmembrane proteins containing destabilizing features, thereby mitigating the trade-off between function and stability.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Transporte Proteico , Proteômica , Ribossomos/metabolismo
6.
Cell Rep ; 22(11): 2951-2963, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539423

RESUMO

Heterochromatin plays a central role in the process of immune evasion, pathogenesis, and transmission of the malaria parasite Plasmodium falciparum during blood stage infection. Here, we use ChIP sequencing to demonstrate that sporozoites from mosquito salivary glands expand heterochromatin at subtelomeric regions to silence blood-stage-specific genes. Our data also revealed that heterochromatin enrichment is predictive of the transcription status of clonally variant genes members that mediate cytoadhesion in blood stage parasites. A specific member (here called NF54varsporo) of the var gene family remains euchromatic, and the resultant PfEMP1 (NF54_SpzPfEMP1) is expressed at the sporozoite surface. NF54_SpzPfEMP1-specific antibodies efficiently block hepatocyte infection in a strain-specific manner. Furthermore, human volunteers immunized with infective sporozoites developed antibodies against NF54_SpzPfEMP1. Overall, we show that the epigenetic signature of var genes is reset in mosquito stages. Moreover, the identification of a strain-specific sporozoite PfEMP1 is highly relevant for vaccine design based on sporozoites.


Assuntos
Hepatócitos/imunologia , Proteínas de Protozoários/metabolismo , Esporozoítos/imunologia , Animais
7.
Cell Microbiol ; 19(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28376558

RESUMO

The telomeres of the malaria parasite Plasmodium falciparum are essential not only for chromosome end maintenance during blood stage development in humans but also to generate genetic diversity by facilitating homologous recombination of subtelomeric, multigene virulence families such as var and rifin. However, other than the telomerase PfTERT, proteins that act at P. falciparum telomeres are poorly characterised. To isolate components that bind to telomeres, we performed oligonucleotide pulldowns and electromobility shift assays with a telomeric DNA probe and identified a non-canonical member of the ApiAP2 family of transcription factors, PfAP2Tel (encoded by PF3D7_0622900), as a component of the P. falciparum telomere-binding protein complex. PfAP2Tel is expressed throughout the intra-erythrocytic life cycle and localises to the nuclear periphery, co-localising with telomeric clusters. Furthermore, EMSAs using the recombinant protein demonstrated direct binding of PfAP2Tel to telomeric repeats in vitro, while genome-wide chromatin immunoprecipitation followed by next generation sequencing corroborated the high specificity of this protein to telomeric ends of all 14 chromosomes in vivo. Taken together, our data describe a novel function for ApiAP2 proteins at chromosome ends and open new avenues to study the molecular machinery that regulates telomere function in P. falciparum.


Assuntos
Variação Antigênica/genética , Proteínas de Ligação a DNA/genética , Plasmodium falciparum/genética , Domínios Proteicos/genética , Proteínas de Ligação a Telômeros/genética , Telômero/metabolismo , Variação Antigênica/imunologia , Imunoprecipitação da Cromatina , Sondas de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Sequenciamento de Nucleotídeos em Larga Escala , Malária/imunologia , Malária/parasitologia , Plasmodium falciparum/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/genética
8.
Cell Microbiol ; 19(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28256794

RESUMO

Dormant liver stage forms (hypnozoites) of the malaria parasite Plasmodium vivax present major hurdles to control and eradicate infection. Despite major research efforts, the molecular composition of hypnozoites remains ill defined. Here, we applied a combination of state-of-the-art technologies to generate the first transcriptome of hypnozoites. We developed a robust laser dissection microscopy protocol to isolate individual Plasmodium cynomolgi hypnozoites and schizonts from infected monkey hepatocytes and optimized RNA-seq analysis to obtain the first transcriptomes of these stages. Comparative transcriptomic analysis identified 120 transcripts as being differentially expressed in the hypnozoite stage relative to the dividing liver schizont, with 69 and 51 mRNAs being up- or down-regulated, respectively, in the hypnozoites. This lead to the identification of potential markers of commitment to and maintenance of the dormant state of the hypnozoite including three transcriptional regulators of the ApiAP2 family, one of which is unique to P. cynomolgi and P. vivax, and the global translational repressor, eIF2a kinase eIK2, all of which are upregulated in the hypnozoite. Together, this work not only provides a primary experimentally-derived list of molecular markers of hypnozoites but also identifies transcriptional and posttranscriptional regulation of gene expression as potentially being key to establishing and maintaining quiescence.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Fígado/parasitologia , Plasmodium cynomolgi/fisiologia , Animais , Haplorrinos , Hepatócitos/parasitologia , Microdissecção e Captura a Laser
9.
DNA Res ; 23(4): 339-51, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27345719

RESUMO

The application of next-generation sequencing to estimate genetic diversity of Plasmodium falciparum, the most lethal malaria parasite, has proved challenging due to the skewed AT-richness [∼80.6% (A + T)] of its genome and the lack of technology to assemble highly polymorphic subtelomeric regions that contain clonally variant, multigene virulence families (Ex: var and rifin). To address this, we performed amplification-free, single molecule, real-time sequencing of P. falciparum genomic DNA and generated reads of average length 12 kb, with 50% of the reads between 15.5 and 50 kb in length. Next, using the Hierarchical Genome Assembly Process, we assembled the P. falciparum genome de novo and successfully compiled all 14 nuclear chromosomes telomere-to-telomere. We also accurately resolved centromeres [∼90-99% (A + T)] and subtelomeric regions and identified large insertions and duplications that add extra var and rifin genes to the genome, along with smaller structural variants such as homopolymer tract expansions. Overall, we show that amplification-free, long-read sequencing combined with de novo assembly overcomes major challenges inherent to studying the P. falciparum genome. Indeed, this technology may not only identify the polymorphic and repetitive subtelomeric sequences of parasite populations from endemic areas but may also evaluate structural variation linked to virulence, drug resistance and disease transmission.


Assuntos
Genoma de Protozoário , Plasmodium falciparum/genética , Telômero/genética , Mapeamento de Sequências Contíguas , Polimorfismo Genético , Análise de Sequência de DNA
10.
Wiley Interdiscip Rev RNA ; 7(6): 772-792, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27230797

RESUMO

The malaria parasite Plasmodium spp. varies the expression profile of its genes depending on the host it resides in and its developmental stage. Virtually all messenger RNA (mRNA) is expressed in a monocistronic manner, with transcriptional activation regulated at the epigenetic level and by specialized transcription factors. Furthermore, recent systems-wide studies have identified distinct mechanisms of post-transcriptional and translational control at various points of the parasite lifecycle. Taken together, it is evident that 'just-in-time' transcription and translation strategies coexist and coordinate protein expression during Plasmodium development, some of which we review here. In particular, we discuss global and specific mechanisms that control protein translation in blood stages of the human malaria parasite Plasmodium falciparum, once a cytoplasmic mRNA has been generated, and its crosstalk with mRNA decay and storage. We also focus on the widespread translational delay observed during the 48-hour blood stage lifecycle of P. falciparum-for over 30% of transcribed genes, including virulence factors required to invade erythrocytes-and its regulation by cis-elements in the mRNA, RNA-processing enzymes and RNA-binding proteins; the first-characterized amongst these are the DNA- and RNA-binding Alba proteins. More generally, we conclude that translational regulation is an emerging research field in malaria parasites and propose that its elucidation will not only shed light on the complex developmental program of this parasite, but may also reveal mechanisms contributing to drug resistance and define new targets for malaria intervention strategies. WIREs RNA 2016, 7:772-792. doi: 10.1002/wrna.1365 For further resources related to this article, please visit the WIREs website.


Assuntos
Regulação da Expressão Gênica , Malária/genética , Plasmodium/genética , Biossíntese de Proteínas , Proteínas de Protozoários/genética , Animais , Humanos , Malária/parasitologia , Plasmodium/patogenicidade
11.
Genome Biol ; 16: 212, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26415947

RESUMO

BACKGROUND: Transcriptome-wide ribosome occupancy studies have suggested that during the intra-erythrocytic lifecycle of Plasmodium falciparum, select mRNAs are post-transcriptionally regulated. A subset of these encodes parasite virulence factors required for invading host erythrocytes, and are currently being developed as vaccine candidates. However, the molecular mechanisms that govern post-transcriptional regulation are currently unknown. RESULTS: We explore the previously identified DNA/RNA-binding protein PfAlba1, which localizes to multiple foci in the cytoplasm of P. falciparum trophozoites. We establish that PfAlba1 is essential for asexual proliferation, and subsequently investigate parasites overexpressing epitope-tagged PfAlba1 to identify its RNA targets and effects on mRNA homeostasis and translational regulation. Using deep sequencing of affinity-purified PfAlba1-associated RNAs, we identify 1193 transcripts that directly bind to PfAlba1 in trophozoites. For 105 such transcripts, 43 % of which are uncharacterized and 13 % of which encode erythrocyte invasion components, the steady state levels significantly change at this stage, evidencing a role for PfAlba1 in maintaining mRNA homeostasis. Additionally, we discover that binding of PfAlba1 to four erythrocyte invasion mRNAs, Rap1, RhopH3, CDPK1, and AMA1, is linked to translation repression in trophozoites whereas release of these mRNAs from a PfAlba1 complex in mature stages correlates with protein synthesis. CONCLUSIONS: We show that PfAlba1 binds to a sub-population of asexual stage mRNAs and fine-tunes the timing of translation. This mode of post-transcriptional regulation may be especially important for P. falciparum erythrocyte invasion components that have to be assembled into apical secretory organelles in a highly time-dependent manner towards the end of the parasite's asexual lifecycle.


Assuntos
Malária Falciparum/genética , Plasmodium falciparum/genética , Biossíntese de Proteínas , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/genética , Animais , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita/genética , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , RNA Mensageiro/genética , Trofozoítos/metabolismo , Trofozoítos/parasitologia
12.
Curr Opin Microbiol ; 20: 153-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25022240

RESUMO

The eukaryotic unicellular pathogen Plasmodium falciparum tightly regulates gene expression, both during development and in adaptation to dynamic host environments. This regulation is evident in the mutually exclusive expression of members of clonally variant virulence multigene families. While epigenetic regulators have been selectively identified at active or repressed virulence genes, their specific recruitment remains a mystery. In recent years, noncoding RNAs (ncRNAs) have emerged as lynchpins of eukaryotic gene regulation; by binding to epigenetic regulators, they provide target specificity to otherwise non-specific enzyme complexes. Not surprisingly, there is great interest in understanding the role of ncRNA in P. falciparum, in particular, their contribution to the mutually exclusive expression of virulence genes. The current repertoire of P. falciparum ncRNAs includes, but is not limited to, subtelomeric ncRNAs, virulence gene-associated ncRNAs and natural antisense RNA transcripts. Continued improvement in high-throughput sequencing methods is sure to expand this repertoire. Here, we summarize recent advances in P. falciparum ncRNA biology, with an emphasis on ncRNA-mediated epigenetic modes of gene regulation.


Assuntos
Regulação da Expressão Gênica , Plasmodium falciparum/genética , RNA não Traduzido/genética , Adaptação Fisiológica , Epigênese Genética , Plasmodium falciparum/fisiologia , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
13.
Nucleic Acids Res ; 40(7): 3066-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22167473

RESUMO

In Plasmodium falciparum, perinuclear subtelomeric chromatin conveys monoallelic expression of virulence genes. However, proteins that directly bind to chromosome ends are poorly described. Here we identify a novel DNA/RNA-binding protein family that bears homology to the archaeal protein Alba (Acetylation lowers binding affinity). We isolated three of the four PfAlba paralogs as part of a molecular complex that is associated with the P. falciparum-specific TARE6 (Telomere-Associated Repetitive Elements 6) subtelomeric region and showed in electromobility shift assays (EMSAs) that the PfAlbas bind to TARE6 repeats. In early blood stages, the PfAlba proteins were enriched at the nuclear periphery and partially co-localized with PfSir2, a TARE6-associated histone deacetylase linked to the process of antigenic variation. The nuclear location changed at the onset of parasite proliferation (trophozoite-schizont), where the PfAlba proteins were also detectable in the cytoplasm in a punctate pattern. Using single-stranded RNA (ssRNA) probes in EMSAs, we found that PfAlbas bind to ssRNA, albeit with different binding preferences. We demonstrate for the first time in eukaryotes that Alba-like proteins bind to both DNA and RNA and that their intracellular location is developmentally regulated. Discovery of the PfAlbas may provide a link between the previously described subtelomeric non-coding RNA and the regulation of antigenic variation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Arqueais/química , Citoplasma/química , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/química , Dimerização , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/ultraestrutura , Estrutura Terciária de Proteína , Proteínas de Protozoários/análise , Proteínas de Protozoários/química , RNA/metabolismo , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/química , Sequências Repetitivas de Ácido Nucleico , Telômero/química
14.
J Biol Chem ; 285(29): 22484-94, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20430885

RESUMO

Hsp70 chaperones can potentially interact with one of several J domain-containing Hsp40 co-chaperones to regulate distinct cellular processes. However, features within Hsp70s that determine Hsp40 specificity are undefined. To investigate this question, we introduced mutations into the ER-lumenal Hsp70, BiP/Kar2p, and found that an R217A substitution in the J domain-interacting surface of BiP compromised the physical and functional interaction with Sec63p, an Hsp40 required for ER translocation. In contrast, interaction with Jem1p, an Hsp40 required for ER-associated degradation, was unaffected. Moreover, yeast expressing R217A BiP exhibited defects in translocation but not in ER-associated degradation. Finally, the genetic interactions of the R217A BiP mutant were found to correlate with those of known translocation mutants. Together, our results indicate that residues within the Hsp70 J domain-interacting surface help confer Hsp40 specificity, in turn influencing distinct chaperone-mediated cellular activities.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/patologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Relação Estrutura-Atividade , Especificidade por Substrato
15.
J Biol Chem ; 284(47): 32462-71, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19748898

RESUMO

Heat shock proteins of 70 kDa (Hsp70s) and their J domain-containing Hsp40 cofactors are highly conserved chaperone pairs that facilitate a large number of cellular processes. The observation that each Hsp70 partners with many J domain-containing proteins (JDPs) has led to the hypothesis that Hsp70 function is dictated by cognate JDPs. If this is true, one might expect highly divergent Hsp70-JDP pairs to be unable to function in vivo. However, we discovered that, when a yeast cytosolic JDP, Ydj1, was targeted to the mammalian endoplasmic reticulum (ER), it interacted with the ER-lumenal Hsp70, BiP, and bound to BiP substrates. Conversely, when a mammalian ER-lumenal JDP, ERdj3, was directed to the yeast cytosol, it rescued the temperature-sensitive growth phenotype of yeast-containing mutant alleles in two cytosolic JDPs, HLJ1 and YDJ1, and activated the ATP hydrolysis rate of Ssa1, the yeast cytosolic Hsp70 that partners with Hlj1 and Ydj1. Surprisingly, ERdj3 mutants that were compromised for substrate binding were unable to rescue the hlj1ydj1 growth defect even though they stimulated the ATPase activity of Ssa1. Yet, J domain mutants of ERdj3 that were defective for interaction with Ssa1 restored the growth of hlj1ydj1 yeast. Taken together, these data suggest that the substrate binding properties of certain JDPs, not simply the formation of unique Hsp70-JDP pairs, are critical to specify in vivo function.


Assuntos
Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cricetinae , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/fisiologia , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Temperatura
16.
Nat Rev Mol Cell Biol ; 9(12): 944-57, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19002207

RESUMO

Protein folding in the endoplasmic reticulum (ER) is monitored by ER quality control (ERQC) mechanisms. Proteins that pass ERQC criteria traffic to their final destinations through the secretory pathway, whereas non-native and unassembled subunits of multimeric proteins are degraded by the ER-associated degradation (ERAD) pathway. During ERAD, molecular chaperones and associated factors recognize and target substrates for retrotranslocation to the cytoplasm, where they are degraded by the ubiquitin-proteasome machinery. The discovery of diseases that are associated with ERAD substrates highlights the importance of this pathway. Here, we summarize our current understanding of each step during ERAD, with emphasis on the factors that catalyse distinct activities.


Assuntos
Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Animais , Citoplasma/metabolismo , Humanos , Dobramento de Proteína , Transporte Proteico , Via Secretória , Especificidade por Substrato , Ubiquitinação
17.
J Biol Chem ; 282(42): 30618-28, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17699516

RESUMO

The Sec61 protein translocation complex in the endoplasmic reticulum (ER) membrane is composed of three subunits. The alpha-subunit, called Sec61p in yeast, is a multispanning membrane protein that forms the protein conducting channel. The functions of the smaller, carboxyl-terminally tail-anchored beta subunit Sbh1p, its close homologue Sbh2p, and the gamma subunit Sss1p are not well understood. Here we show that co-translational protein translocation into the ER is reduced in sbh1Delta sbh2Delta cells, whereas there is a limited reduction of post-translational translocation and no effect on export of a mutant form of alpha-factor precursor for ER-associated degradation in the cytosol. The translocation defect and the temperature-sensitive growth phenotype of sbh1Delta sbh2Delta cells were rescued by expression of the transmembrane domain of Sbh1p alone, and the Sbh1p transmembrane domain was sufficient for coimmunoprecipitation with Sec61p and Sss1p. Furthermore, we show that Sbh1p co-precipitates with the ER transmembrane protein Rtn1p. Sbh1p-Rtn1p complexes do not appear to contain Sss1p and Sec61p. Our results define the transmembrane domain as the minimal functional domain of the Sec61beta homologue Sbh1p in ER translocation, identify a novel interaction partner for Shb1p, and imply that Sbh1p has additional functions that are not directly linked to protein translocation in association with the Sec61 complex.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/genética , Deleção de Genes , Fator de Acasalamento , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Complexos Multiproteicos/genética , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Canais de Translocação SEC , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA