Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JASA Express Lett ; 4(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39235327

RESUMO

Input/output (I/O) functions of distortion-product otoacoustic emissions (DPOAEs) may contain sudden amplitude minima (notches) although they are measured in animals with a negligible reflection source. We measured DPOAEs in humans and analyzed the data by time-frequency filtering to decompose the nonlinear-distortion and coherent-reflection components of DPOAE. The presented I/O functions of the nonlinear-distortion component contain notches. We suggest that because these notches are present only in the nonlinear-distortion component, they result from destructive interference between distortion-product wavelets coming from the primary generation region. Simulations conducted with a nonlinear cochlear model showed qualitative similarities with the presented experimental results.

2.
J Acoust Soc Am ; 153(5): 2586, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37129675

RESUMO

Swept-sines provide a tool for fast and high-resolution measurement of evoked otoacoustic emissions. During the measurement, a response to swept-sine(s) is recorded by a probe placed in the ear canal. Otoacoustic emissions can then be extracted by various techniques, e.g., Fourier analysis, the heterodyne method, and the least-square-fitting (LSF) technique. This paper employs a technique originally proposed with exponential swept-sines, which allows for direct emission extraction from the measured intermodulation impulse response. It is shown here that the technique can be used to extract distortion-product otoacoustic emissions (DPOAEs) evoked with two simultaneous swept-sines. For proper extraction of the DPOAE phase, the technique employs previously proposed adjusted formulas for exponential swept-sines generating so-called synchronized swept-sines (SSSs). Here, the SSS technique is verified using responses derived from a numerical solution of a cochlear model and responses measured in human subjects. Although computationally much less demanding, the technique yields comparable results to those obtained by the LSF technique, which has been shown in the literature to be the most noise-robust among the emission extraction methods.


Assuntos
Cóclea , Emissões Otoacústicas Espontâneas , Humanos , Cóclea/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia , Análise de Fourier , Meato Acústico Externo/fisiologia
3.
J Acoust Soc Am ; 152(3): 1660, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36182298

RESUMO

The basilar membrane in the cochlea can be modeled as an array of fluid coupled segments driven by stapes vibration and by the undamping nonlinear force simulating cochlear amplification. If stimulated with two tones, the model generates additional tones due to nonlinear distortion. These distortion products (DPs) can be transmitted into the ear canal and produce distortion-product otoacoustic emissions (DPOAEs) known to be generated in the healthy ear of various vertebrates. This study presents a solution for DPs in a two-dimensional nonlinear cochlear model with cochlear roughness-small irregularities in the impedance along the basilar membrane, which may produce additional DPs due to coherent reflection. The solution allows for decomposition of various sources of DPs in the model. In addition to the already described nonlinear-distortion and coherent-reflection mechanisms of DP generation, this study identifies a long-latency DPOAE component due to perturbation of nonlinear force. DP wavelets that are coherently reflected due to impedance irregularities travel toward the stapes across the primary generation region of DPs and there evoke perturbation of the nonlinear undamping force. The ensuing DP wavelets have opposite phase to the wavelets arising from coherent reflection, which results in partial cancellation of the coherent-reflection DP wavelets.


Assuntos
Cóclea , Emissões Otoacústicas Espontâneas , Estimulação Acústica/métodos , Animais , Membrana Basilar/fisiologia , Cóclea/fisiologia , Meato Acústico Externo , Dinâmica não Linear , Emissões Otoacústicas Espontâneas/fisiologia
4.
J Acoust Soc Am ; 147(6): 3992, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32611132

RESUMO

Stimulus-frequency otoacoustic emissions (SFOAEs) are generated by coherent reflection of forward traveling waves by perturbations along the basilar membrane. The strongest wavelets are backscattered near the place where the traveling wave reaches its maximal amplitude (tonotopic place). Therefore, the SFOAE group delay might be expected to be twice the group delay estimated in the cochlear filters. However, experimental data have yielded steady-state SFOAE components with near-zero latency. A cochlear model is used to show that short-latency SFOAE components can be generated due to nonlinear reflection of the compressor or suppressor tones used in SFOAE measurements. The simulations indicate that suppressors produce more pronounced short-latency components than compressors. The existence of nonlinear reflection components due to suppressors can also explain why SFOAEs can still be detected when suppressors are presented more than half an octave above the probe-tone frequency. Simulations of the SFOAE suppression tuning curves showed that phase changes in the SFOAE residual as the suppressor frequency increases are mostly determined by phase changes of the nonlinear reflection component.


Assuntos
Compressão de Dados , Emissões Otoacústicas Espontâneas , Estimulação Acústica , Membrana Basilar , Cóclea
5.
Front Aging Neurosci ; 11: 219, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496946

RESUMO

Deteriorated speech comprehension is a common manifestation of the age-related decline of auditory functions (presbycusis). It could be assumed that when presbycusis is accompanied by tinnitus, general hearing functions, and particularly comprehension of speech in quiet and speech in noise (SIN), will be significantly affected. In this study, speech comprehension ability and other parameters of auditory function were assessed in elderly subjects with (T, n = 25) and without (NT, n = 26) tinnitus, aiming for examination of both peripheral and central auditory processing. Apart from high-frequency audiograms in quiet and in background noise, speech recognition thresholds in silence or in competitive babble noise, and the ability to understand temporally gated speech (GS), we measured also sensitivity to frequency modulation (FM) and interaural delay, gap detection thresholds (GDT), or the difference limens of intensity. The results show that in elderly participants matched by age (mean ages around 68 years), cognitive status (median MoCA scores around 27), and hearing thresholds [median pure-tone averages (PTA) around 16 dB hearing loss (HL)], tinnitus per se has little influence on speech comprehension. The tinnitus patients also show similar GDT, sensitivity to interaural intensity difference, and sensitivity to FM as the NT subjects. Despite these similarities, nevertheless, significant differences in auditory processing have been found in the tinnitus participants: a worse ability to detect tones in noise, a higher sensitivity to intensity changes, and a higher sensitivity to interaural time differences. Additional correlation analyses further revealed that speech comprehension in the T subjects is dependent on the sensitivity to temporal modulation and interaural time delay (ITD), while these correlations are weak and non-significant in the NT subjects. Therefore, despite similarities in average speech comprehension and several other parameters of auditory function, elderly people with tinnitus exhibit different auditory processing, particularly at a suprathreshold level. The results also suggest that speech comprehension ability of elderly tinnitus patients relies more on temporal features of the sound stimuli, especially under difficult conditions, compared to elderly people without tinnitus.

6.
J Acoust Soc Am ; 146(2): EL92, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31472590

RESUMO

The amplitudes of distortion-product otoacoustic emissions (DPOAEs) may abruptly decrease even though the stimulus level is relatively high. These notches observed in the DPOAE input/output functions or distortion-product grams have been hypothesized to be due to destructive interference between wavelets generated by distributed sources of the nonlinear-distortion component of DPOAEs. In this paper, simulations with a smooth cochlear model and its analytical solution support the hypothesis that destructive interference between individual wavelets may lead to the amplitude notches and explain the cause for onset and offset amplitude overshoots in the DPOAE signal measured for intensity pairs in the notches.


Assuntos
Cóclea/fisiologia , Modelos Teóricos , Emissões Otoacústicas Espontâneas , Estimulação Acústica , Humanos
8.
J Acoust Soc Am ; 145(5): 2909, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31153314

RESUMO

Distortion product otoacoustic emissions (DPOAEs) are evoked by two stimulus tones with frequency f1 and f2 of ratio f2/f1 in the range between approximately 1.05 and 1.4. This study theoretically and experimentally analyzes the cubic 2f1-f2 DPOAE for different stimulus levels of one of the tones while the other is constant. Simulations for f2/f1 of 1.2 and moderate stimulus levels (30-70 dB sound pressure level) indicate that cubic distortion products are generated along a relatively large length of the basilar membrane, the extent of which increases with stimulus level. However, apical from the place of maximum nonlinear force, the wavelets generated by these distributed sources mutually cancel. Therefore, although the spatial extent of the primary DPOAE sources broadens with increasing stimulus level (up to 1.5 oct), the basilar-membrane region contributing to the DPOAE signal is relatively narrow (0.6 oct) and level independent. The observed dependence of DPOAE amplitude on stimulus level can be well-approximated by a point source at the basilar-membrane place where the largest distortion product (maximum of the nonlinear force) is generated. Onset and offset of the DPOAE signal may contain amplitude overshoots (complexities), which are in most cases asymmetrical. Two-tone suppression was identified as the main cause of these onset and offset complexities. DPOAE measurements in two normal-hearing subjects support the level dependence of the steady-state DPOAE amplitude and the asymmetry in the onset and offset responses predicted by the theoretical analysis.

9.
Front Aging Neurosci ; 11: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863300

RESUMO

Age related hearing loss (presbycusis) is one of the most common sensory deficits in the aging population. The main subjective ailment in the elderly is the deterioration of speech understanding, especially in a noisy environment, which cannot solely be explained by increased hearing thresholds. The examination methods used in presbycusis are primarily focused on the peripheral pathologies (e.g., hearing sensitivity measured by hearing thresholds), with only a limited capacity to detect the central lesion. In our study, auditory tests focused on central auditory abilities were used in addition to classical examination tests, with the aim to compare auditory abilities between an elderly group (elderly, mean age 70.4 years) and young controls (young, mean age 24.4 years) with clinically normal auditory thresholds, and to clarify the interactions between peripheral and central auditory impairments. Despite the fact that the elderly were selected to show natural age-related deterioration of hearing (auditory thresholds did not exceed 20 dB HL for main speech frequencies) and with clinically normal speech reception thresholds (SRTs), the detailed examination of their auditory functions revealed deteriorated processing of temporal parameters [gap detection threshold (GDT), interaural time difference (ITD) detection] which was partially responsible for the altered perception of distorted speech (speech in babble noise, gated speech). An analysis of interactions between peripheral and central auditory abilities, showed a stronger influence of peripheral function than temporal processing ability on speech perception in silence in the elderly with normal cognitive function. However, in a more natural environment mimicked by the addition of background noise, the role of temporal processing increased rapidly.

10.
J Acoust Soc Am ; 145(1): 1, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710916

RESUMO

This paper presents a rate-code model of binaural interaction inspired by recent neurophysiological findings. The model consists of a peripheral part and a binaural part. The binaural part is composed of models of the medial superior olive (MSO) and the lateral superior olive (LSO), which are parts of the auditory brainstem. The MSO and LSO model outputs are preprocessed in the interaural time difference (ITD) and interaural level difference (ILD) central stages, respectively, which give absolute values of the predicted lateralization at their outputs, allowing a direct comparison with psychophysical data. The predictions obtained with the MSO and LSO models are compared with subjective data on the lateralization of pure tones and narrowband noises, discrimination of the ITD and ILD, and discrimination of the phase warp. The lateralization and discrimination experiments show good agreement with the subjective data. In the case of the phase-warp experiment, the models agree qualitatively with the subjective data. The results demonstrate that rate-code models of MSO and LSO can be used to explain psychophysical data considering lateralization and discrimination based on binaural cues.


Assuntos
Tronco Encefálico/fisiologia , Modelos Neurológicos , Localização de Som , Adulto , Discriminação Psicológica , Orelha/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA