Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13932, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886365

RESUMO

Understanding what makes a community vulnerable to invasion is integral to the successful management of invasive species. Our understanding of how characteristics of resident plant interactions, such as the network architecture of interactions, can affect the invasibility of plant communities is limited. Using a simulation model, we tested how successfully a new plant invader established in communities with different network architectures of species interactions. We also investigated whether species interaction networks lead to relationships between invasibility and other community properties also affected by species interaction networks, such as diversity, species dominance, compositional stability and the productivity of the resident community. We found that higher invasibility strongly related with a lower productivity of the resident community. Plant interaction networks influenced diversity and invasibility in ways that led to complex but clear relationships between the two. Heterospecific interactions that increased diversity tended to decrease invasibility. Negative conspecific interactions always increased diversity and invasibility, but increased invasibility more when they increased diversity less. This study provides new theoretical insights into the effects of plant interaction networks on community invasibility and relationships between diversity and invasibility. Combined with increasing empirical evidence, these insights could have useful implications for the management of invasive plant species.


Assuntos
Biodiversidade , Espécies Introduzidas , Plantas , Modelos Biológicos , Simulação por Computador , Ecossistema
2.
Conserv Physiol ; 12(1): coae037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894755

RESUMO

Soil microbial inoculants are increasingly being explored as means to improve soil conditions to facilitate ecological restoration. In southwestern Western Australia, highly biodiverse Banksia woodland plant communities are increasingly threatened by various factors including climate change, land development and mining. Banksia woodland restoration is necessary to conserve this plant community. The use of microbial inoculation in Banksia woodland restoration has not yet been investigated. Here, we evaluated the efficacy of a commercial microbial inoculant (GOGO Juice, Neutrog Australia Pty Ltd) for improving the performance of 10 ecologically diverse Banksia woodland plant species in a pot experiment. Plants were subjected to one of two watering regimes (well-watered and drought) in combination with microbial inoculation treatments (non-inoculated and inoculated). Plants were maintained under these two watering treatments for 10 weeks, at which point plants in all treatments were subjected to a final drought period lasting 8 weeks. Plant performance was evaluated by plant biomass and allocation, gas exchange parameters, foliar carbon and nitrogen and stable isotope (δ15N and δ13C) compositions. Plant xylem sap phytohormones were analysed to investigate the effect of microbial inoculation on plant phytohormone profiles and potential relationships with other observed physiological parameters. Across all investigated plant species, inoculation treatments had small effects on plant growth. Further analysis within each species revealed that inoculation treatments did not result in significant biomass gain under well-watered or drought-stressed conditions, and effects on nitrogen nutrition and photosynthesis were variable and minimal. This suggests that the selected commercial microbial inoculant had limited benefits for the tested plant species. Further investigations on the compatibility between the microorganisms (present in the inoculant) and plants, timing of inoculation, viability of the microorganisms and concentration(s) required to achieve effectiveness, under controlled conditions, and field trials are required to test the feasibility and efficacy in actual restoration environments.

3.
Conserv Physiol ; 12(1): coae018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715928

RESUMO

Ascertaining the traits important for acclimation and adaptation is a critical first step to predicting the fate of populations and species facing rapid environmental change. One of the primary challenges in trait-based ecology is understanding the patterns and processes underpinning functional trait variation in plants. Studying intraspecific variation of functional traits across latitudinal gradients offers an excellent in situ approach to assess associations with environmental factors, which naturally covary along these spatial scales such as the local climate and soil profiles. Therefore, we examined how climatic and edaphic conditions varied across a ~160-km latitudinal gradient to understand how these conditions were associated with the physiological performance and morphological expression within five spatially distinct populations spanning the latitudinal distribution of a model species (Stylidium hispidum Lindl.). Northern populations had patterns of trait means reflecting water conservation strategies that included reduced gas exchange, rosette size and floral investment compared to the southern populations. Redundancy analysis, together with variance partitioning, showed that climate factors accounted for a significantly greater portion of the weighted variance in plant trait data (22.1%; adjusted R2 = 0.192) than edaphic factors (9.3%; adjusted R2 = 0.08). Disentangling such independent and interactive abiotic drivers of functional trait variation will deliver key insights into the mechanisms underpinning local adaptation and population-level responses to current and future climates.

4.
Plant Soil ; 496(1-2): 71-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510945

RESUMO

Background and aims: Belowground interspecific plant facilitation is supposed to play a key role in enabling species co-existence in hyperdiverse ecosystems in extremely nutrient-poor, semi-arid habitats, such as Banksia woodlands in southwestern-Australia. Manganese (Mn) is readily mobilised by Banksia cluster root activity in most soils and accumulates in mature leaves of native Australian plant species without significant remobilisation during leaf senescence. We hypothesised that neighbouring shrubs are facilitated in terms of Mn uptake depending on distance to surrounding cluster root-forming Banksia trees. Methods: We mapped all Banksia trees and selected neighbouring shrubs within a study site in Western Australia. Soil samples were collected and analysed for physical properties and nutrient concentrations. To assesses the effect of Banksia tree proximity on leaf Mn concentrations [Mn] of non-cluster-rooted woody shrubs, samples of similarly aged leaves were taken. We used multiple linear models to test for factors affecting shrub leaf [Mn]. Results: None of the assessed soil parameters showed a significant correlation with shrub leaf Mn concentrations. However, we observed a significant positive effect of very close Banksia trees (2 m) on leaf [Mn] in one of the understorey shrubs. We found additional effects of elevation and shrub size. Conclusions: Leaf micronutrient concentrations of understorey shrubs were enhanced when growing within 2 m of tall Banksia trees. Our model predictions also indicate that belowground facilitation of Mn uptake was shrub size-dependent. We discuss this result in the light of plant water relations and shrub root system architecture. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06092-6.

5.
J Agric Food Chem ; 71(20): 7703-7709, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37191313

RESUMO

Ma̅nuka honey is known for its strong bioactivity, which arises from the autocatalytic conversion of 1,3-dihydroxyacetone (dihydroxyacetone, DHA) in the floral nectar of Leptospermum scoparium (Myrtaceae) to the non-peroxide antibacterial compound methylglyoxal during honey maturation. DHA is also a minor constituent of the nectar of several other Leptospermum species. This study used high-performance liquid chromatography to test whether DHA was present in the floral nectar of five species in other genera of the family Myrtaceae: Ericomyrtus serpyllifolia (Turcz.) Rye, Chamelaucium sp. Bendering (T.J. Alford 110), Kunzea pulchella (Lindl.) A.S. George, Verticordia chrysantha Endl., and Verticordia picta Endl. DHA was found in the floral nectar of two of the five species: E. serpyllifolia and V. chrysantha. The average amount of DHA detected was 0.08 and 0.64 µg per flower, respectively. These findings suggest that the accumulation of DHA in floral nectar is a shared trait among several genera within the family Myrtaceae. Consequently, non-peroxide-based bioactive honey may be sourced from floral nectar outside the genus Leptospermum.


Assuntos
Mel , Myrtaceae , Néctar de Plantas/química , Mel/análise , Leptospermum/química , Di-Hidroxiacetona/química , Secale
6.
Plant Physiol ; 190(3): 1854-1865, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35920766

RESUMO

The origin of allometric scaling patterns that are multiples of one-fourth has long fascinated biologists. While not universal, quarter-power scaling relationships are common and have been described in all major clades. Several models have been advanced to explain the origin of such patterns, but questions regarding the discordance between model predictions and empirical data have limited their widespread acceptance. Notable among these is a fractal branching model that predicts power-law scaling of both metabolism and physical dimensions. While a power law is a useful first approximation to some data sets, nonlinear data compilations suggest the possibility of alternative mechanisms. Here, we show that quarter-power scaling can be derived using only the preservation of volume flow rate and velocity as model constraints. Applying our model to land plants, we show that incorporating biomechanical principles and allowing different parts of plant branching networks to be optimized to serve different functions predicts nonlinearity in allometric relationships and helps explain why interspecific scaling exponents covary along a fractal continuum. We also demonstrate that while branching may be a stochastic process, due to the conservation of volume, data may still be consistent with the expectations for a fractal network when one examines sub-trees within a tree. Data from numerous sources at the level of plant shoots, stems, and petioles show strong agreement with our model predictions. This theoretical framework provides an easily testable alternative to current general models of plant metabolic allometry.


Assuntos
Plantas , Árvores , Modelos Biológicos
7.
Plant Sci ; 323: 111378, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35842059

RESUMO

Leptospermum polygalifolium Salisb. can accumulate high concentrations of dihydroxyacetone (DHA), precursor of the antimicrobial compound methylglyoxal found in honey obtained from floral nectar of Leptospermum spp. Floral nectar dynamics over flower lifespan depends on internal and external factors that invariably impact nectar quality. Current models to estimate nectar quality in Leptospermum spp. overlook time of day, daily (24 h), and long-term dynamics of nectar exudation and accumulation over flower lifespan. To explain the dynamics of nectar quality over flower lifespan, accumulated nectar from flowers of different ages was collected from two L. polygalifolium clones, and then re-collected 24 h later from the same flowers. High-Performance Liquid Chromatography was used to quantify DHA amount and total equivalents of glucose + fructose (Tsugar) per flower in the nectar. DHA and Tsugar amount per flower differed with flower age and between clones. In accumulated nectar, the amount of DHA and Tsugar per flower rose to a broad peak post-anthesis before decreasing. Immediately after peaking DHA declined more quickly than Tsugar in accumulated nectar due to a greater decrease in the exudation of DHA than for Tsugar. The DHA : Tsugar ratios in accumulated nectar and in nectar exuded over the next 24 h were similar and decreased with flower age, indicating that exudation and reabsorption occurred concomitantly across flower development. Hence there is a balance between exudation and reabsorption. A quantitative model suggested that flowers have the potential to exude more DHA and Tsugar than actually accumulated.


Assuntos
Mel , Leptospermum , Carboidratos/análise , Di-Hidroxiacetona/análise , Di-Hidroxiacetona/química , Flores/química , Mel/análise , Leptospermum/química , Néctar de Plantas , Açúcares
8.
Sci Total Environ ; 834: 155395, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452727

RESUMO

Our understanding of how water dynamics determines the probability of tree mortality during drought is incomplete. Here we help address this shortcoming by coupling approaches from the disciplines of ecophysiology, geophysics and remote sensing in a woodland ecosystem undergoing protracted drying. Water uptake and use strategies varied between the dominant canopy species of the ecosystem. At one extreme were species that tightly regulate their water status, which is broadly consistent with the definition of isohydry. The higher leaf temperatures revealed by thermal imagery of these isohydric species are likely a reflection of reduced latent cooling owing to a stringent control of transpiration rate. Where silty sediments occur in the root zone, this strategy may have the effect of limiting the water sources available to these species during prolonged drought because of an insufficient hydraulic gradient for water uptake. In contrast were species that allowed their water status to fluctuate, operating in a fashion more consistent with anisohydry. For these species, latent cooling owing to relatively high transpiration rates maintained leaf temperatures near, or below, the ambient air temperature. The resulting drawdown in leaf water potential between soil and leaves in these anisohydric species may generate a sufficient hydraulic gradient to enable water uptake from silty soil during seasonal or prolonged droughts. In this way the spatial distribution of fine textured soil could indicate areas where the isohydric hydraulic control strategy is disadvantageous during prolonged droughts or where annual soil water recharge has fallen below a critical threshold.


Assuntos
Secas , Ecossistema , Florestas , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Solo , Água/fisiologia
9.
J Exp Bot ; 72(8): 3279-3293, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33543268

RESUMO

Lack of O2 and high concentrations of iron (Fe) and manganese (Mn) commonly occur in waterlogged soils. The development of a barrier to impede radial O2 loss (ROL) is a key trait improving internal O2 transport and waterlogging tolerance in plants. We evaluated the ability of the barrier to ROL to impede the entry of excess Fe into the roots of the waterlogging-tolerant grass Urochloa humidicola. Plants were grown in aerated or stagnant deoxygenated nutrient solution with 5 µM or 900 µM Fe. Quantitative X-ray microanalysis was used to determine cell-specific Fe concentrations at two positions behind the root apex in relation to ROL and the formation of apoplastic barriers. At a mature zone of the root, Fe was 'excluded' at the exodermis where a suberized lamella was evident, a feature also associated with a strong barrier to ROL. In contrast, the potassium (K) concentration was similar in all root cells, indicating that K uptake was not affected by apoplastic barriers. The hypothesis that the formation of a tight barrier to ROL impedes the apoplastic entry of toxic concentrations of Fe into the mature zones of roots was supported by the significantly higher accumulation of Fe on the outer side of the exodermis.


Assuntos
Oxigênio , Raízes de Plantas , Ferro , Poaceae , Solo
10.
Plant Cell Environ ; 44(4): 1257-1267, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33386607

RESUMO

Nutrient-poor ecosystems globally exhibit high plant diversity. One mechanism enabling the co-existence of species in such ecosystems is facilitation among plants with contrasting nutrient-acquisition strategies. The ecophysiological processes underlying these interactions remain poorly understood. We hypothesized that root positioning plays a role between sympatric species in nutrient-poor vegetation. We investigated how the growth traits of the focal mycorrhizal non-cluster-rooted Hibbertia racemosa change when grown in proximity of non-mycorrhizal Banksia attenuata, which produces cluster roots that increase nutrient availability, compared with growth with conspecifics. Focal plants were placed in the centre of rhizoboxes, and biomass allocation, root system architecture, specific root length (SRL), and leaf nutrient concentration were assessed. When grown with B. attenuata, focal plants decreased root investment, increased root growth towards B. attenuata, and positioned their roots near B. attenuata cluster roots. SRL was greater, and the degree of localized root investment correlated positively with B. attenuata cluster-root biomass. Total nutrient contents in the focal individuals were greater when grown with B. attenuata. Focal plants directed their root growth towards the putatively facilitating neighbour's cluster roots, modifying root traits and investment. Preferential root positioning and root morphological traits play important roles in positive plant-plant interactions.


Assuntos
Dilleniaceae/fisiologia , Nutrientes/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Comunicação , Dilleniaceae/crescimento & desenvolvimento , Dilleniaceae/metabolismo , Ecossistema , Micorrizas , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Proteaceae/crescimento & desenvolvimento , Proteaceae/metabolismo , Proteaceae/fisiologia
11.
Funct Plant Biol ; 48(4): 411-421, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287947

RESUMO

C4 perennial Urochloa spp. grasses are widely planted in extensive areas in the tropics. These areas are continuously facing waterlogging events, which limits plant growth and production. However, no commercial cultivar combining excellent waterlogging tolerance with superior biomass production and nutritional quality is available. The objective of this study was to identify root traits that can be used for selecting waterlogging tolerant species of Urochloa. Root respiration, root morphological, architectural and anatomical traits were evaluated in eight contrasting Urochloa spp. genotypes grown under aerated or deoxygenated stagnant solutions. Moreover, modelling of internal aeration was used to relate differences in root traits and root growth in waterlogged soils. Increased aerenchyma formation in roots, reduced stele area and development of a fully suberised exodermis are characteristics improving internal aeration of roots and therefore determining waterlogging tolerance in these C4 forage grasses. Waterlogging-tolerant genotypes had steeper root angles and greater root lengths than the waterlogging-sensitive genotypes. In stagnant conditions, waterlogging-tolerant genotypes had a greater proportion of aerenchyma and reduced stele area in root cross-sections, had deeper roots, steeper root angle and larger root biomass, which in turn, allowed for greater shoot biomass. Total root length had the strongest positive influence on shoot dry mass and can therefore be used as proxy for selecting waterlogging tolerant Urochloa genotypes.


Assuntos
Raízes de Plantas , Poaceae , Ensaios de Triagem em Larga Escala , Solo , Água
12.
Oecologia ; 193(4): 843-855, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32816111

RESUMO

Plants that produce specialised cluster roots, which mobilise large quantities of poorly available nutrients such as phosphorus (P), can provide a benefit to neighbouring plants that produce roots in the cluster rhizosphere, as demonstrated previously in pot studies. To be effective, such roots must be present within the short time of peak cluster activity. We tested if this requirement is met, and quantified potential P benefits, in a hyperdiverse Mediterranean woodland of southwest Australia where cluster-rooted species are prominent. Using minirhizotrons, we monitored root dynamics during the wet season in the natural habitat. We found non-cluster roots intermingling with all 57 of the observed cluster roots of the studied tree species, Banksia attenuata. Almost all (95%) of these cases were observed in a high-moisture treatment simulating the 45-year average, but not present when we intercepted some of the rainfall. We estimate that cluster-root activity can increase P availability to intermingling roots to a theoretical maximum of 80% of total P in the studied soil. Due to their high P-remobilisation efficiency (89%), which results from P rapidly being relocated from cluster roots within the plant, senesced Banksia cluster roots are a negligible P source for other roots. We conclude that, rather than serving as a P source, it is the cluster-root activity, particularly the exudation of carboxylates, that may improve the coexistence of interacting species that are capable of root intermingling, thus potentially promoting species diversity in nutrient-poor habitats, and that this mechanism will be less effective in a drying climate.


Assuntos
Fósforo , Proteaceae , Austrália , Raízes de Plantas , Rizosfera , Solo
13.
Ann Bot ; 124(6): 1019-1032, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31152584

RESUMO

BACKGROUND AND AIMS: The perennial C4 grass Urochloa humidicola is widely planted on infertile acidic and waterlogging-prone soils of tropical America. Waterlogging results in soil anoxia, and O2 deficiency can reduce nutrient uptake by roots. Interestingly, both nutrient deficiencies and soil waterlogging can enhance root cortical cell senescence, and the increased gas-filled porosity facilitates internal aeration of roots. We tested the influence of nutrient supply and root-zone O2 on root traits, leaf nutrient concentrations and growth of U. humidicola. METHODS: Plants were grown in pots in a completely randomized design under aerated or stagnant deoxygenated hydroponic conditions and six nutrient regimes, with low to high concentrations of all essential elements, for 28 d in a controlled-temperature greenhouse. The standard acid solution (SAS) used was previously designed based on infertile acidic soils of the tropical America savannas, and step increases in the concentration of SAS were used in aerated or deoxygenated 0.1 % agar solution, which mimics changes in gas composition in waterlogged soils. Measurements included shoot and root growth, root porosity, root anatomy, radial O2 loss, and leaf tissue nutrient concentrations. KEY RESULTS: Shoot dry mass was reduced for plants in stagnant compared with aerated conditions at high, but not at low, levels of mineral nutrition. In low-nutrition stagnant solution, roots were shorter, of greater porosity and had smaller radial thickness of the stele. Suberized lamellae and lignified sclerenchyma, as well as a strong barrier to radial O2 loss, were documented for roots from all treatments. Leaf nutrient concentrations of K, Mg and Ca (but not N, P and S) were higher in aerated than in stagnant conditions. CONCLUSIONS: Under low-nutrient conditions, plant growth in stagnant solution was equal to that in aerated solution, whereas under higher-nutrient regimes growth increased but dry mass in stagnant solution was less than in aerated solution. Slow growth in low-nutrient conditions limited any further response to the low O2 treatment, and greater porosity and smaller stele size in roots would enhance internal O2 movement within roots in the nutrient-limited stagnant conditions. A constitutive barrier to radial O2 loss and aerenchyma facilitates O2 movement to the tips of roots, which presumably contributes to maintaining nutrient uptake and the tolerance of U. humidicola to low O2 in the root-zone.


Assuntos
Raízes de Plantas , Poaceae , Humanos , Hipóxia , Nutrientes , Oxigênio
14.
Tree Physiol ; 39(1): 6-18, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299517

RESUMO

There is increasing concern about tree mortality around the world due to climatic extremes and associated shifts in pest and pathogen dynamics. Yet, empirical studies addressing the interactive effect of biotic and abiotic stress on plants are very rare. Therefore, in this study, we examined the interaction between drought stress and a canker pathogen, Quambalaria coyrecup, on the eucalypt - Corymbia calophylla (marri), which is experiencing increasing drought stress. We hypothesized that drought stress would increase marri's susceptibility to canker disease, and cankers would have the largest negative effect on plants that are already drought stressed before pathogen inoculation. To test the hypotheses, in a glasshouse, marri saplings were exposed to drought either before or after pathogen inoculation, or were well-watered or droughted throughout the experiment either with or without inoculation. Canker development was greater in well-watered saplings than in droughted saplings, with the fastest development occurring in well-watered saplings that had experienced drought stress before inoculation. Irrespective of water treatments, marri saplings employed phenol-based localized biochemical defence against the pathogen. Drought reduced photosynthesis and growth, however, a negative effect of canker disease on saplings' physiological performance was only observed in well-watered saplings. In well-watered saplings, canker-induced loss of sapwood function contributed to reduced whole-plant hydraulic conductance, photosynthesis and growth. The results provide evidence that timing of drought stress influences host physiology, and host condition influences canker disease susceptibility through differences in induced biochemical defence mechanisms. The observations highlight the importance of explicitly incorporating abiotic and biotic stress, as well as their interactions, in future studies of tree mortality in drought-prone regions worldwide.


Assuntos
Basidiomycota , Secas , Myrtaceae/microbiologia , Doenças das Plantas/microbiologia , Árvores/microbiologia , Interações Hospedeiro-Patógeno , Myrtaceae/crescimento & desenvolvimento , Estresse Fisiológico , Árvores/crescimento & desenvolvimento
15.
New Phytol ; 222(3): 1179-1187, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30570766

RESUMO

Leaves with stomata on both upper and lower surfaces, termed amphistomatous, are relatively rare compared with hypostomatous leaves with stomata only on the lower surface. Amphistomaty occurs predominantly in fast-growing herbaceous annuals and in slow-growing perennial shrubs and trees. In this paper, we present the current understanding and hypotheses on the costs and benefits of amphistomaty related to water and CO2 transport in contrasting leaf morphologies. First, there is no evidence that amphistomatous species achieve higher stomatal densities on a projected leaf area basis than hypostomatous species, but two-sided gas exchange is less limited by boundary layer effects. Second, amphistomaty may provide a specific advantage in thick leaves by shortening the pathway for CO2 transport between the atmosphere and the chloroplasts. In thin leaves of fast-growing herbaceous annuals, in which both the adaxial and abaxial pathways are already short, amphistomaty enhances leaf-atmosphere gas-exchange capacity. Third, amphistomaty may help to optimise the leaf-interior water status for CO2 transport by reducing temperature gradients and so preventing the condensation of water that could limit CO2 diffusion. Fourth, a potential cost of amphistomaty is the need for additional investments in leaf water transport tissue to balance the water loss through the adaxial surface.


Assuntos
Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Transporte Biológico , Estômatos de Plantas/metabolismo , Feixe Vascular de Plantas/metabolismo
16.
Plant Cell Environ ; 40(10): 2437-2446, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28707352

RESUMO

Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance.


Assuntos
Plantas/metabolismo , Salinidade , Solo/química , Água/metabolismo , Íons , Osmose , Brotos de Planta/fisiologia , Soluções , Xilema/fisiologia
17.
Plant Physiol ; 172(4): 2286-2299, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27784769

RESUMO

Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage.


Assuntos
Clima Desértico , Ecossistema , Eucalyptus/anatomia & histologia , Eucalyptus/fisiologia , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Feixe Vascular de Plantas/anatomia & histologia , Gases/metabolismo , Modelos Lineares , Estômatos de Plantas/anatomia & histologia , Feixe Vascular de Plantas/fisiologia , Análise de Componente Principal
18.
New Phytol ; 210(4): 1219-28, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26991124

RESUMO

A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes.


Assuntos
Carbono/metabolismo , Magnoliopsida/fisiologia , Água/metabolismo , Evolução Biológica , Difusão , Magnoliopsida/anatomia & histologia , Fenótipo , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal
19.
AoB Plants ; 82016 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26755503

RESUMO

Efforts to re-establish native plant species should consider intraspecific variation if we are to restore genetic diversity and evolutionary potential. Data describing spatial genetic structure and the scale of adaptive differentiation are needed for restoration seed sourcing. Genetically defined provenance zones provide species-specific guidelines for the distance within which seed transfer likely maintains levels of genetic diversity and conserves locally adapted traits. While a growing number of studies incorporate genetic marker data in delineation of local provenance, they often fail to distinguish the impacts of neutral and non-neutral variation. We analysed population genetic structure for 134 amplified fragment length polymorphism (AFLP) markers in Stylidium hispidum (Stylidiaceae) along a north-south transect of the species' range with the goal to estimate the distance at which significant genetic differences occur among source and recipient populations in restoration. In addition, we tested AFLP markers for signatures of selection, and examined the relationship of neutral and putatively selected markers with climate variables. Estimates of population genetic structure revealed significant levels of differentiation (ΦPT = 0.23) and suggested a global provenance distance of 45 km for pairwise comparisons of 16 populations. Of the 134 markers, 13 exhibited evidence of diversifying selection (ΦPT = 0.52). Using data for precipitation and thermal gradients, we compared genetic, geographic and environmental distance for subsets of neutral and selected markers. Strong isolation by distance was detected in all cases, but positive correlations with climate variables were present only for markers with signatures of selection. We address findings in light of defining local provenance in ecological restoration.

20.
Funct Plant Biol ; 43(8): 739-750, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480500

RESUMO

We evaluated tolerances to salinity (10-2000mM NaCl) in three halophytic succulent Tecticornia species that are differentially distributed along a salinity gradient at an ephemeral salt lake. The three species showed similar relative shoot and root growth rates at 10-1200mM NaCl; at 2000mM NaCl, T. indica subsp. bidens (Nees) K.A.Sheph and P.G.Wilson died, but T. medusa (K.A.Sheph and S.J.van Leeuwen) and T. auriculata (P.G.Wilson) K.A.Sheph and P.G.Wilson survived but showed highly diminished growth rates and were at incipient water stress. The mechanisms of salinity tolerance did not differ among the three species and involved the osmotic adjustment of succulent shoot tissues by the accumulation of Na+, Cl- and the compatible solute glycinebetaine, and the maintenance of high net K+ to Na+ selectivity to the shoot. Growth at extreme salinity was presumably limited by the capacity for vacuolar Na+ and Cl- uptake to provide sufficiently low tissue osmotic potentials for turgor-driven growth. Tissue sugar concentrations were not reduced at high salinity, suggesting that declines in growth would not have been caused by inadequate photosynthesis and substrate limitation compared with plants at low salinity. Equable salt tolerance among the three species up to 1200mM NaCl means that other factors are likely to contribute to species composition at sites with salinities below this level. The lower NaCl tolerance threshold for survival in T. indica suggests that this species would be competitively inferior to T. medusa and T. auriculata in extremely saline soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA