Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Blood Adv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640435

RESUMO

Somatic mutants of calreticulin (CRT) drive myeloproliferative neoplasms (MPNs) via binding to the thrombopoietin receptor (MPL) and aberrant activation of the JAK/STAT pathway. Compared with healthy donors, platelets from MPN patients with CRT mutations display low cell surface MPL. Additionally, co-expression of MPL with an MPN-linked CRT mutant (CRTDel52) reduces cell surface MPL, suggesting that CRTDel52 may induce MPL degradation. We show that lysosomal degradation is relevant to the turnover of CRTDel52 and MPL. Furthermore, CRTDel52 increases the lysosomal localization and degradation of MPL. Mammalian target of rapamycin (mTOR) inhibitors reduce cellular CRTDel52, MPL and secreted CRTDel52 levels, and impair CRTDel52-mediated cell proliferation. mTOR inhibition also reduces colony formation and differentiation of CD34+ cells from MPN patients but not healthy donors. Together, these findings indicate low surface MPL as a biomarker of mutant CRT-mediated MPN and induced degradation of CRTDel52 and MPL as an avenue for therapeutic intervention.

2.
Eur J Cell Biol ; 102(4): 151347, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562219

RESUMO

The differentiation of fibroblasts into pathological myofibroblasts during wound healing is characterized by increased cell surface expression of αv-integrins. Our previous studies found that the deubiquitinase (DUB) USP10 removes ubiquitin from αv-integrins, leading to cell surface integrin accumulation, subsequent TGFß1 activation, and pathological myofibroblast differentiation. In this study, a yeast two-hybrid screen revealed a novel binding partner for USP10, the formin, DAAM1. We found that DAAM1 binds to and inhibits USP10's DUB activity through the FH2 domain of DAAM1 independent of its actin functions. The USP10/DAAM1 interaction was also supported by proximity ligation assay (PLA) in primary human corneal fibroblasts. Treatment with TGFß1 significantly increased USP10 and DAAM1 protein expression, PLA signal, and co-localization to actin stress fibers. DAAM1 siRNA knockdown significantly reduced co-precipitation of USP10 and DAAM1 on purified actin stress fibers, and ß1- and ß5-integrin ubiquitination. This resulted in increased αv-, ß1-, and ß5-integrin total protein levels, αv-integrin recycling, and extracellular fibronectin (FN) deposition. Together, our data demonstrate that DAAM1 inhibits USP10's DUB activity on integrins subsequently regulating cell surface αv-integrin localization and FN accumulation.


Assuntos
Integrinas , Humanos , Actinas/metabolismo , Enzimas Desubiquitinantes/metabolismo , Forminas/metabolismo , Integrinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Cicatrização
3.
Invest Ophthalmol Vis Sci ; 62(13): 15, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34665194

RESUMO

Purpose: Integrins play a central role in myofibroblast pathological adhesion, over-contraction, and TGFß activation. Previously, we demonstrated that after corneal wounding, αv integrins are protected from intracellular degradation by upregulation of the deubiquitinase USP10, leading to cell-surface integrin accumulation. Because integrins bind to and internalize extracellular matrix (ECM), we tested whether extracellular fibronectin (FN) accumulation can result from an increase in integrin and matrix recycling in primary human corneal fibroblasts (HCFs). Methods: Primary HCFs were isolated from cadaver eyes. HCFs were transfected with either USP10 cDNA or control cDNA by nucleofection. Internalized FN was quantified with a FN ELISA. Recycled extracellular integrin and FN were detected with streptavidin-488 by live cell confocal microscopy (Zeiss LSM 780). Endogenous FN extra domain A was detected by immunocytochemistry. Cell size and removal of FN from the cell surface was determined by flow cytometry. Results: USP10 overexpression increased α5ß1 (1.9-fold; P < 0.001) and αv (1.7-fold; P < 0.05) integrin recycling, with a concomitant increase in biotinylated FN internalization (2.1-fold; P < 0.05) and recycling over 4 days (1.7-2.2-fold; P < 0.05). The dependence of FN recycling on integrins was demonstrated by α5ß1 and αv integrin blocking antibodies, which, compared with control IgG, decreased biotinylated FN recycling (62% and 84%, respectively; P < 0.05). Overall, we established that extracellular FN was composed of approximately 1/3 recycled biotinylated FN and 2/3 endogenously secreted FN. Conclusions: Our data suggest that reduced integrin degradation with a subsequent increase in integrin/FN recycling after wounding may be a newly identified mechanism for the characteristic accumulation of ECM in corneal scar tissue.


Assuntos
Córnea/metabolismo , Fibronectinas/metabolismo , Ubiquitina Tiolesterase/biossíntese , Adesão Celular , Membrana Celular/metabolismo , Células Cultivadas , Córnea/citologia , Ensaio de Imunoadsorção Enzimática , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Transdução de Sinais
4.
Prog Mol Subcell Biol ; 59: 145-162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34050865

RESUMO

The endoplasmic reticulum (ER) is an organelle that mediates the proper folding and assembly of proteins destined for the cell surface, the extracellular space and subcellular compartments such as the lysosomes. The ER contains a wide range of molecular chaperones to handle the folding requirements of a diverse set of proteins that traffic through this compartment. The lectin-like chaperones calreticulin and calnexin are an important class of structurally-related chaperones relevant for the folding and assembly of many N-linked glycoproteins. Despite the conserved mechanism of action of these two chaperones in nascent protein recognition and folding, calreticulin has unique functions in cellular calcium signaling and in the immune response. The ER-related functions of calreticulin in the assembly of major histocompatibility complex (MHC) class I molecules are well-studied and provide many insights into the modes of substrate and co-chaperone recognition by calreticulin. Calreticulin is also detectable on the cell surface under some conditions, where it induces the phagocytosis of apoptotic cells. Furthermore, mutations of calreticulin induce cell transformation in myeloproliferative neoplasms (MPN). Studies of the functions of the mutant calreticulin in cell transformation and immunity have provided many insights into the normal biology of calreticulin, which are discussed.


Assuntos
Sinalização do Cálcio , Sinalização do Cálcio/genética , Calnexina/genética , Calnexina/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Sistema Imunitário , Dobramento de Proteína
5.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33909030

RESUMO

Myeloproliferative neoplasms (MPNs) are frequently driven by mutations within the C-terminal domain (C-domain) of calreticulin (CRT). CRTDel52 and CRTIns5 are recurrent mutations. Oncogenic transformation requires both mutated CRT and the thrombopoietin receptor (Mpl), but the molecular mechanism of CRT-mediated constitutive activation of Mpl is unknown. We show that the acquired C-domain of CRTDel52 mediates both Mpl binding and disulfide-linked CRTDel52 dimerization. Cysteine mutations within the novel C-domain (C400A and C404A) and the conserved N-terminal domain (N-domain; C163A) of CRTDel52 are required to reduce disulfide-mediated dimers and multimers of CRTDel52. Based on these data and published structures of CRT oligomers, we identify an N-domain dimerization interface relevant to both WT CRT and CRTDel52. Elimination of disulfide bonds and ionic interactions at both N-domain and C-domain dimerization interfaces is required to abrogate the ability of CRTDel52 to mediate cell proliferation via Mpl. Thus, MPNs exploit a natural dimerization interface of CRT combined with C-domain gain of function to achieve cell transformation.


Assuntos
Calreticulina/genética , Transtornos Mieloproliferativos/genética , Receptores de Trombopoetina/genética , Carcinogênese/genética , Humanos , Mutação/genética , Transtornos Mieloproliferativos/patologia , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/genética , Trombopoetina/genética
6.
Can J Microbiol ; 64(4): 243-251, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29361248

RESUMO

The universally conserved signal recognition particle (SRP) pathway that mediates co-translational targeting of membrane and secretory proteins is essential for eukaryotic and prokaryotic cells. The Mycobacterium tuberculosis SRP pathway consists of 2 proteins, Ffh and FtsY, and a 4.5S RNA molecule. Although the Escherichia coli SRP pathway is well studied, understanding of the M. tuberculosis SRP pathway components is very limited. In this study, we have overexpressed and characterized the M. tuberculosis SRP receptor (SR) FtsY as a GTP binding protein. Further, we established the direct protein-protein interaction between Ffh and FtsY. The Ffh-FtsY complex formation resulted in mutual stimulation of their GTP hydrolysis activity. We also attempted to biochemically characterize the SRP components by constructing the antisense gene knockdown strains of ffh and ftsY in M. tuberculosis. Loss of ffh and ftsY resulted in a decreased in vitro growth rate of the antisense ffh strain as compared with the antisense ftsY strain. Finally, 2-D gel electrophoresis of antisense depleted ffh and ftsY strains identified differential expression of 14 proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Mapeamento de Interação de Proteínas , Receptores Citoplasmáticos e Nucleares/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Bactérias/genética , Western Blotting , Eletroforese em Gel Bidimensional , GTP Fosfo-Hidrolases/metabolismo , Hidrólise , Oligorribonucleotídeos Antissenso , Plasmídeos , Proteômica , RNA Bacteriano/genética , Receptores Citoplasmáticos e Nucleares/genética , Partícula de Reconhecimento de Sinal/genética
7.
Cell Stress Chaperones ; 23(4): 539-550, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29273966

RESUMO

Mycobacterium smegmatis, a rapidly growing non-pathogenic mycobacterium, is currently used as a model organism to study mycobacterial genetics. Acetamidase of M. smegmatis is the highly inducible enzyme of Mycobacteria, which utilizes several amide compounds as sole carbon and nitrogen sources. The acetamidase operon has a complex regulatory mechanism, which involves three regulatory proteins, four promoters, and three operator elements. In our previous study, we showed that over-expression of AmiA leads to a negative regulation of acetamidase by blocking the P2 promoter. In this study, we have identified a new positive regulatory protein, AmiC that interacts with AmiA through protein-protein interaction. Gel mobility shift assay showed that AmiC protein inhibits AmiA from binding to the P2 promoter. Interaction of AmiC with cis-acting elements identified its binding ability to multiple regulatory regions of the operon such as P3, OP3, and P1 promoter/operator. Consequently, the addition of inducer acetamide to AmiC complexe trips the complexes, causing AmiC to appear to be the sensory protein for the amides. Homology modeling and molecular docking studies suggest AmiC as a member of Periplasmic binding proteins, which preferentially bind to the inducers and not to the suppressor. Over-expression of AmiC leads to down-regulation of the negative regulator, amiA, and constitutive up-regulation of acetamidase. Based on these findings, we conclude that AmiC positively regulates the acetamidase operon.


Assuntos
Amidoidrolases/genética , Mycobacterium smegmatis/genética , Óperon/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/metabolismo , Fases de Leitura Aberta/genética , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas , Ligação Proteica
8.
Front Microbiol ; 7: 1654, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27818650

RESUMO

Mycobacterium tuberculosis adapts to stress conditions by responding to the signals from its external environment. M. tuberculosis genome encodes 11 eukaryotic like serine/threonine protein kinases (STPK) and their importance in regulating the physiology and virulence of the bacteria are being explored. Previous study from our lab identified the M. tuberculosis STPK, PknI interacts with two peroxidase proteins such as Rv2159c and Rv0148. In this study, we have characterized the biological function behind the PknI-Rv2159c interaction in M. tuberculosis. Point mutation of Ala-Gly-Trp motif identified that only Ala49 and Gly50 amino acids of Rv2159c are responsible for interaction and there is no phosphorylation involved in the PknI-Rv2159c interaction. Rv2159c is a member from the carboxymuconolactone decarboxylase family with peroxidase activity. Enzymatic assays with catalytic site point mutants showed that Cys84 of Rv2159c was responsible for its alkylhydroperoxidase activity. Interestingly, interaction with PknI increased its peroxidase activity by several folds. Gene knockdown of Rv2159c in M. tuberculosis showed increased sensitivity to peroxides such as cumene hydroperoxide and hydrogen peroxide. Proteomic analysis of differentially expressing Rv2159c strains by 2D gel electrophoresis and mass spectrometry revealed the differential abundance of 21 proteins. The total absence of oxidoreductase, GuaB1 suggests the essential role of Rv2159c in redox maintenance. Our findings provide new insights on signaling mechanisms of PknI in maintaining the redox homeostasis during oxidative stresses.

9.
J Mol Graph Model ; 62: 283-293, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26546727

RESUMO

Protein-protein interactions control the diverse and essential molecular processes inside the cell. To maintain the cellular physiology, protein kinases not only signal their substrates through reversible phosphorylation, but they also physically interact with them. PknI, a serine/threonine protein kinase of Mycobacterium tuberculosis is known to be important for cellular homoeostasis. In this study, we have identified the interacting proteins for PknI. We screened for proteins interacting with PknI using an in vitro assay, Far-western blot. This protein kinase specifically interacts with two peroxidase proteins of M. tuberculosis, Rv2159c and Rv0148. The PknI-Rv2159c interaction pair was further studied for the critical amino acid residues in Rv2159c that are responsible for the interaction. Rv2159c, a hypothetical protein is predicted to be an antioxidant with peroxidase activity. We performed homology modelling of Rv2159c protein and molecular docking using multiple docking servers such as Z-Dock and ClusPro. Further, the most favorable conformation of PknI-Rv2159c interaction was obtained using molecular dynamics simulation. The critical amino acid residues of the Rv2159c involved in interaction with PknI were identified. Mutation and docking analysis showed that the Ala1-Gly2-Trp3 residues in Rv2159c structure are responsible for the interaction. The free binding energy between the wild type and mutant complexes using MM-GBSA has provided insight about the stability of PknI-Rv2159c interaction. We propose that, PknI physically interacts with Rv2159c both in vitro and in silico studies.


Assuntos
Proteínas de Bactérias/química , Proteína Quinase C/química , Fatores de Virulência/química , Domínio Catalítico , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína
10.
J Lab Autom ; 19(3): 332-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713428

RESUMO

Every year, an unacceptably large number of infant deaths occur in developing nations, with premature birth and asphyxia being two of the leading causes. A well-regulated thermal environment is critical for neonatal survival. Advanced incubators currently exist, but they are far too expensive to meet the needs of developing nations. We are developing a thermodynamically advanced low-cost incubator suitable for operation in a low-resource environment. Our design features three innovations: (1) a disposable baby chamber to reduce infant mortality due to nosocomial infections, (2) a passive cooling mechanism using low-cost heat pipes and evaporative cooling from locally found clay pots, and (3) insulated panels and a thermal bank consisting of water that effectively preserve and store heat. We developed a prototype incubator and visited and presented our design to our partnership hospital site in Mysore, India. After obtaining feedback, we have determined realistic, nontrivial design requirements and constraints in order to develop a new prototype incubator for clinical trials in hospitals in India.


Assuntos
Equipamentos Descartáveis , Desenho de Equipamento , Incubadoras para Lactentes , Conservação de Recursos Energéticos/economia , Custos e Análise de Custo , Infecção Hospitalar/economia , Infecção Hospitalar/prevenção & controle , Países em Desenvolvimento , Equipamentos Descartáveis/economia , Pesquisas sobre Atenção à Saúde , Custos Hospitalares , Hospitais Urbanos , Humanos , Incubadoras para Lactentes/economia , Índia , Recém-Nascido , Avaliação das Necessidades , Organizações , Pais , Atenção Primária à Saúde/economia , Estudo de Prova de Conceito , Atenção Secundária à Saúde/economia , Recursos Humanos
11.
Microbiol Res ; 169(11): 873-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24675085

RESUMO

Regulation of gene expression is one of the mechanisms of virulence in pathogenic organisms. In this context, we would like to understand the gene regulation of acetamidase enzyme of Mycobacterium smegmatis, which is the first reported inducible enzyme in mycobacteria. The acetamidase is highly inducible and the expression of this enzyme is increased 100-fold when the substrate acetamide is added. The acetamidase structural gene (amiE) is found immediately downstream of three predicted open reading frames (ORFs). Three of these genes along with a divergently expressed ORF are predicted to form an operon and involved in the regulation of acetamidase enzyme. Here we report expression, purification and functional characterization of AmiA which is one of these predicted ORFs. Electrophoretic mobility shift assays showed that AmiA binds to the region between the amiA and amiD near the predicted promoter (P2). Over-expression of AmiA significantly lowered the expression of acetamidase compared to the wild type as demonstrated by qRT-PCR and SDS-PAGE. We conclude that AmiA binds near P2 promoter and acts as a repressor in the regulation of acetamidase operon. The described work is a further step forward toward broadening the knowledge on understanding of the complex gene regulatory mechanism of Mycobacterium sp.


Assuntos
Amidoidrolases/genética , Proteínas de Bactérias/isolamento & purificação , Mycobacterium smegmatis/enzimologia , Óperon , Proteínas Repressoras/isolamento & purificação , Proteínas Repressoras/metabolismo , Amidoidrolases/isolamento & purificação , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA