Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
JBMR Plus ; 8(5): ziae037, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590756

RESUMO

Bone mineral density (BMD) loss in people living with HIV occurs with the initiation of combined antiretroviral therapy (cART), particularly with tenofovir disoproxil fumarate (TDF) containing cART. Switching from TDF to abacavir (ABC) or dolutegravir (DTG) leads to increased BMD. Whether BMD gains are due to cessation of TDF or anabolic effects of ABC or DTG is unclear. We investigated the effects of ABC and DTG on osteoblast lineage cells in vitro and in vivo. Primary human osteoblasts and male C57BL/6 mice were treated with individual antiretrovirals (ARVs) or a combination of ABC/DTG/lamivudine (3TC). Nearly all ARVs and cART inhibited osteogenic activity in vitro. Due to the importance of Wnt/ß-catenin in bone formation, we further investigated ARV effects on the Wnt/ß-catenin pathway. ABC, alone and as part of ABC/DTG/3TC, increased osteoblastic ß-catenin activity as indicated by increased TOPFlash activity, hypo-phosphorylated (active) ß-catenin staining, and ß-catenin targeted gene expression. Mice treated with TDF had decreased lumbar spine BMD and trabecular connectivity density in the vertebrae, while those treated with ABC/DTG/3TC reduced cortical area and thickness in the femur. Mice treated with ABC alone had no bone structural changes, increased circulating levels of the bone formation marker, P1NP, and elevated expression of the Wnt/ß-catenin target gene, Lef1, in osteocyte enriched samples. Further, bones from ARV-treated mice were isolated to evaluate ARV distribution. All ARVs were detected in the bone tissue, which was inclusive of bone marrow, but when bone marrow was removed, only TDF, ABC, and DTG were detected at ~0.1% of the circulating levels. Overall, our findings demonstrate that ABC activates Wnt/ß-catenin signaling, but whether this leads to increased bone formation requires further study. Assessing the impact of ARVs on bone is critical to informing ARV selection and/or discovery of regimens that do not negatively impact the skeleton.

2.
Front Med (Lausanne) ; 9: 897188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059820

RESUMO

Diabetic glomerular injury is a major complication of diabetes mellitus and is the leading cause of end stage renal disease (ESRD). Healthy podocytes are essential for glomerular function and health. Injury or loss of these cells results in increased proteinuria and kidney dysfunction and is a common finding in various glomerulopathies. Thus, mechanistic understanding of pathways that protect podocytes from damage are essential for development of future therapeutics. MicroRNA-146a (miR-146a) is a negative regulator of inflammation and is highly expressed in myeloid cells and podocytes. We previously reported that miR-146a levels are significantly reduced in the glomeruli of patients with diabetic nephropathy (DN). Here we report generation of mice with selective deletion of miR-146a in podocytes and use of these mice in models of glomerular injury. Induction of glomerular injury in C57BL/6 wildtype mice (WT) and podocyte-specific miR-146a knockout (Pod-miR146a-/-) animals via administration of low-dose lipopolysaccharide (LPS) or nephrotoxic serum (NTS) resulted in increased proteinuria in the knockout mice, suggesting that podocyte-expressed miR-146a protects these cells, and thus glomeruli, from damage. Furthermore, induction of hyperglycemia using streptozotocin (STZ) also resulted in an accelerated development of glomerulopathy and a rapid increase in proteinuria in the knockout animals, as compared to the WT animals, further confirming the protective role of podocyte-expressed miR-146a. We also confirmed that the direct miR-146a target, ErbB4, was significantly upregulated in the diseased glomeruli and erlotinib, an ErbB4 and EGFR inhibitor, reducedits upregulation and the proteinuria in treated animals. Primary miR146-/- podocytes from these animals also showed a basally upregulated TGFß-Smad3 signaling in vitro. Taken together, this study shows that podocyte-specific miR-146a is imperative for protecting podocytes from glomerular damage, via modulation of ErbB4/EGFR, TGFß, and linked downstream signaling.

3.
Cell Rep Methods ; 1(2)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34766102

RESUMO

Spatial organization of molecules and cells in complex tissue microenvironments provides essential organizational cues in health and disease. A significant need exists for improved visualization of these spatial relationships. Here, we describe a multiplex immunofluorescence imaging method, termed SeqStain, that uses fluorescent-DNA-labeled antibodies for immunofluorescent staining and nuclease treatment for de-staining that allows selective enzymatic removal of the fluorescent signal. SeqStain can be used with primary antibodies, secondary antibodies, and antibody fragments to efficiently analyze complex cells and tissues. Additionally, incorporation of specific endonuclease restriction sites in antibody labels allows for selective removal of fluorescent signals while retaining other signals that can serve as marks for subsequent analyses. The application of SeqStain on human kidney tissue provided a spatialomic profile of the organization of >25 markers in the kidney, highlighting it as a versatile, easy-to-use, and gentle new technique for spatialomic analyses of complex microenvironments.


Assuntos
Anticorpos , Corantes , Humanos , Animais , Camundongos , Imunofluorescência , Coloração e Rotulagem
4.
Front Oncol ; 10: 748, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528880

RESUMO

Lung cancer is one of the leading causes of cancer-related deaths in the United States. A major hurdle for improved therapies is immune suppression mediated by the tumor and its microenvironment. The lung tumor microenvironment (TME) contains large numbers of tumor-associated macrophages (TAMs), which suppress the adaptive immune response, increase neo-vascularization of the tumor, and provide pro-tumor factors to promote tumor growth. CD11b is highly expressed on myeloid cells, including TAMs, where it forms a heterodimeric integrin receptor with CD18 (known as CD11b/CD18, Mac-1, CR3, and αMß2), and plays an important role in recruitment and biological functions of these cells, and is a validated therapeutic target. Here, we describe our pre-clinical studies targeting CD11b in the context of lung cancer, using pharmacologic and genetic approaches that work via positive allosteric modulation of CD11b function. GB1275 is a novel small molecule modulator of CD11b that is currently in Phase 1/2 clinical development. We assess GB1275 treatment effects on tumor growth and immune infiltrates in the murine Lewis Lung Carcinoma (LLC) syngeneic tumor model. Additionally, as an orthogonal approach to determine mechanisms of action, we utilize our recently developed novel CD11b knock-in (KI) mouse that constitutively expresses CD11b containing an activating isoleucine to glycine substitution at residue 332 in the ligand binding CD11b A-domain (I332G) that acts as a positive allosteric modulator of CD11b activity. We report that pharmacologic modulation of CD11b with GB1275 significantly reduces LLC tumor growth. CD11b KI mice similarly show significant reduction in both the size and rate of LLC tumor growth, as compared to WT mice, mimicking our observed treatment effects with GB1275. Tumor profiling revealed a significant reduction in TAM infiltration in GB1275-treated and in CD11b KI mice, increase in the ratio of M1/M2-like TAMs, and concomitant increase in cytotoxic T cells. The profiling also showed a significant decrease in CCL2 levels and a concomitant reduction in Ly6Chi monocytes in circulation in both groups. These findings suggest that positive allosteric modulation of CD11b reduces TAM density and reprograms them to enhance the adaptive immune response and is a novel therapeutic strategy against lung cancer.

5.
Neuromolecular Med ; 21(4): 529-539, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31077035

RESUMO

Emerging stroke literature suggests that treatment of experimentally induced stroke with stem cells offered post-stroke neuroprotection via exosomes produced by these cells. Treatment with exosomes has great potential to overcome the limitations associated with cell-based therapies. However, in our preliminary studies, we noticed that the exosomes released from human umbilical cord blood-derived mesenchymal stem cells (MSCs) under standard culture conditions did not improve the post-stroke neurological outcome. Because of this apparent discrepancy, we hypothesized that exosome characteristics vary with the conditions of their production. Specifically, we suggest that the exosomes produced from the cocultures of regular and oxygen-glucose-deprived (OGD) MSCs in vitro would represent the exosomes produced from MSCs that are exposed to ischemic brain cells in vivo, and offer similar therapeutic benefits that the cell treatment would provide. We tested the efficacy of therapy with exosomes secreted from human umbilical cord blood (HUCB)-derived MSCs under in vitro hypoxic conditions on post-stroke brain damage and neurological outcome in a rat model of transient focal cerebral ischemia. We performed the TTC staining procedure as well as the neurological tests including the modified neurological severity scores (mNSS), the modified adhesive removal (sticky-tape), and the beam walking tests before ischemia and at regular intervals until 7 days reperfusion. Treatment with exosomes obtained from the cocultures of normal and OGD-induced MSCs reduced the infarct size and ipsilateral hemisphere swelling, preserved the neurological function, and facilitated the recovery of stroke-induced rats. Based on the results, we conclude that the treatment with exosomes secreted from MSCs at appropriate experimental conditions attenuates the post-stroke brain damage and improves the neurological outcome.


Assuntos
Dano Encefálico Crônico/prevenção & controle , Isquemia Encefálica/terapia , Exossomos , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Peso Corporal , Dano Encefálico Crônico/etiologia , Dano Encefálico Crônico/patologia , Isquemia Encefálica/complicações , Hipóxia Celular , Técnicas de Cocultura , Sangue Fetal/citologia , Glucose/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Oxigênio/farmacologia , Equilíbrio Postural , Desempenho Psicomotor , Ratos , Traumatismo por Reperfusão/etiologia , Regulação para Cima
6.
Cell Physiol Biochem ; 52(6): 1280-1291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31026391

RESUMO

BACKGROUND/AIMS: Recent studies demonstrated that the treatment with mesenchymal stem cells (MSCs) obtained from the human umbilical cord blood improved survival, reduced brain damage, prevented apoptosis, suppressed inflammatory responses, downregulated the DNA damage-inducing genes, upregulated the DNA repair genes, and facilitated neurological recovery in stroke-induced animals. Emerging stroke literature supports the concept that the exosomes released from MSCs are the primary biological principles underlying the post-stroke neuroprotection offered by MSCs treatment. METHODS: Because the treatment with exosomes has a great potential to overcome the limitations associated with cell-based therapies, we tested the efficacy of exosomes secreted from HUCB-MSCs under standard culture conditions on post-stroke brain damage and neurological outcome in a rat model of ischemic stroke by performing TTC staining as well as the modified neurological severity scores, modified adhesive removal, beam-walking, and accelerating Rotarod performance tests before ischemia and at regular intervals until seven days reperfusion. RESULTS: Exosomes treatment attenuated the infarct size. Treatment with exosomes did not affect the post-stroke survival rate and body weight changes, but exacerbated the somatosensory and motor dysfunction and adversely affected the natural recovery that occurs without any treatment. CONCLUSION: Treatment with exosomes secreted from HUCB-MSCs under standard culture conditions attenuates the ischemic brain damage but does not improve the post-stroke neurological outcome.


Assuntos
Encéfalo/patologia , Exossomos/transplante , Células-Tronco Mesenquimais/citologia , Acidente Vascular Cerebral/terapia , Animais , Encéfalo/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Masculino , Atividade Motora , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Resultado do Tratamento
7.
Stroke Vasc Neurol ; 3(3): 153-159, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30294471

RESUMO

Background and purpose: Recent reports from our laboratory demonstrated the post-ischaemic expression profile of various matrix metalloproteinases (MMPs) in rats and the detrimental role of MMP-12 in post-stroke brain damage. We hypothesise that the post-stroke dysregulation of MMPs is similar across species and that genetic deletion of MMP-12 would not affect the post-stroke expression of other MMPs. We tested our hypothesis by determining the pre-ischaemic and post-ischaemic expression profile of MMPs in wild-type and MMP-12 knockout mice. Methods: Focal cerebral ischaemia was induced in wild-type and MMP-12 knockout mice by middle cerebral artery occlusion procedure by insertion of a monofilament suture. One hour after ischaemia, reperfusion was initiated by removing the monofilament. One day after reperfusion, ischaemic brain tissues from various groups of mice were collected, and total RNA was isolated and subjected to cDNA synthesis followed by PCR analysis. Results: Although the post-stroke expression profile of MMPs in the ischaemic brain of mice is different from rats, there is a clear species similarity in the expression of MMP-12, which was found to be predominantly upregulated in both species. Further, the post-stroke induction or inhibition of various MMPs in MMP-12 knockout mice is different from their respective expression profile in wild-type mice. Moreover, the brain mRNA expression profile of various MMPs in MMP-12 knockout mice under normal conditions is also different to their expression in wild-type mice. Conclusions: In the ischaemic brain, MMP-12 upregulates several fold higher than any other MMP. Mice derived with the genetic deletion of MMP-12 are constitutive and have altered MMP expression profile both under normal and ischaemic conditions.


Assuntos
Deleção de Genes , Infarto da Artéria Cerebral Média/enzimologia , Metaloproteinase 12 da Matriz/deficiência , RNA Mensageiro/metabolismo , Transcriptoma , Animais , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Infarto da Artéria Cerebral Média/genética , Masculino , Metaloproteinase 12 da Matriz/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , Ratos , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA