RESUMO
BACKGROUND: The burden of dengue infection needs to be monitored along with tracking of the changes in dengue virus (DENV) transmission intensity for vaccine introduction decisions. METHODS: The seroprevalence of dengue was investigated in Pune City in India, in early 2019 using 1654 sera from apparently healthy human participants enrolled randomly through multistage cluster sampling. We used 797 retrospective human sera from late 2009 for comparison. All sera were assessed for the presence of dengue-specific IgG antibodies. A subset (n = 230) was tested for serotype-specific plaque reduction-neutralizing antibodies against all four serotypes. RESULTS: The dengue IgG seroprevalence of 62.9% (95% CI 59.4-66.1) in 2009 increased to 88.4% (95% CI 86.8-89.8) in 2019. Age-stratified dengue seroprevalence revealed a gradual increase in IgG seropositivity from 70.1% in 0-9 years to 85.0% in 10-19 years. The annual probability of dengue infection estimated as a force of infection was 4.1 (95% CI 3.8-4.5) in 2009, which increased to 10.9 (95% CI 10.2-11.6) in 2019. Analysis of dengue serotype-specific neutralizing antibodies revealed DENV-3 as the dominant serotype. The age of exposure to at least one dengue serotype was reduced in 2019 over 2009. CONCLUSIONS: There was a significant increase in the intensity of dengue virus transmission in Pune City over the decade. Since over 85% of the participants above nine years of age had exposure to DENV by 2019, dengue vaccine introduction can be considered. Moreover, such repeated serosurveys in different regions might inform about the readiness of the population for dengue vaccination.
RESUMO
Chikungunya virus (CHIKV) is an arthropod-borne virus capable of causing large outbreaks. We aimed to determine the decadal change in the extent of chikungunya virus infection from 2009 to 2019. We implemented a prospective cross-sectional survey in Pune City using a 30-cluster approach with probability-proportion-to-size (PPS) sampling, with blood samples collected from 1654 participants in early 2019. The study also included an additional 799 blood samples from an earlier serosurvey in late 2009. The samples were tested by an in-house anti-CHIKV IgG ELISA assay. The overall seroprevalence in 2019 was 53.2% (95% CI 50.7−55.6) as against 8.5% (95% CI 6.5−10.4) in 2009. A fivefold increase in seroprevalence was observed in a decade (p < 0.00001). The seroprevalence increased significantly with age; however, it did not differ between genders. Modeling of age-stratified seroprevalence data from 2019 coincided with a recent outbreak in 2016 followed by the low-level circulation. The mean estimated force of infection during the outbreak was 35.8% (95% CI 2.9−41.2), and it was 1.2% after the outbreak. To conclude, the study reports a fivefold increase in the seroprevalence of chikungunya infection over a decade in Pune City. The modeling approach considering intermittent outbreaks with continuous low-level circulation was a better fit and coincided with a recent outbreak reported in 2016. Community engagement and effective vector control measures are needed to avert future chikungunya outbreaks.