Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(19)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39408612

RESUMO

Methamphetamine (METH) is a drug of abuse, which induces behavioral sensitization following repeated doses. Since METH alters blood pressure, in the present study we assessed whether systolic and diastolic blood pressure (SBP and DBP, respectively) are sensitized as well. In this context, we investigated whether alterations develop within A1/C1 neurons in the vasomotor center. C57Bl/6J male mice were administered METH (5 mg/kg, daily for 5 consecutive days). Blood pressure was measured by tail-cuff plethysmography. We found a sensitized response both to SBP and DBP, along with a significant decrease of catecholamine neurons within A1/C1 (both in the rostral and caudal ventrolateral medulla), while no changes were detected in glutamic acid decarboxylase. The decrease of catecholamine neurons was neither associated with the appearance of degeneration-related marker Fluoro-Jade B nor with altered expression of α-synuclein. Rather, it was associated with reduced free radicals and phospho-cJun and increased heat shock protein-70 and p62/sequestosome within A1/C1 cells. Blood pressure sensitization was not associated with altered arterial reactivity. These data indicate that reiterated METH administration may increase blood pressure persistently and may predispose to an increased cardiovascular response to METH. These data may be relevant to explain cardiovascular events following METH administration and stressful conditions.


Assuntos
Pressão Sanguínea , Catecolaminas , Metanfetamina , Camundongos Endogâmicos C57BL , Neurônios , Animais , Metanfetamina/efeitos adversos , Metanfetamina/farmacologia , Metanfetamina/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Masculino , Catecolaminas/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Bulbo/metabolismo , Bulbo/efeitos dos fármacos
2.
Antioxidants (Basel) ; 13(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38247525

RESUMO

High glucose-induced endothelial dysfunction is an important pathological feature of diabetic vasculopathy. While genome-wide studies have identified an association between type 2 diabetes mellitus (T2DM) and increased expression of a C2 calcium-dependent domain containing 4B (C2CD4B), no study has yet explored the possible direct effect of C2CD4B on vascular function. Vascular reactivity studies were conducted using a pressure myograph, and nitric oxide and oxidative stress were assessed through difluorofluorescein diacetate and dihydroethidium, respectively. We demonstrate that high glucose upregulated both mRNA and protein expression of C2CD4B in mice mesenteric arteries in a time-dependent manner. Notably, the inhibition of C2CD4B expression by genetic knockdown efficiently prevented hyperglycemia-induced oxidative stress, endothelial dysfunction, and loss of nitric oxide (NO) bioavailability. Recombinant C2CD4B evoked endothelial dysfunction of mice mesenteric arteries, an effect associated with increased reactive oxygen species (ROS) and decreased NO production. In isolated human umbilical vein endothelial cells (HUVECs), C2CD4B increased phosphorylation of endothelial nitric oxide synthase (eNOS) at the inhibitory site Thr495 and reduced eNOS dimerization. Pharmacological inhibitors of phosphoinositide 3-kinase (PI3K), Akt, and PKCα effectively attenuated oxidative stress, NO reduction, impairment of endothelial function, and eNOS uncoupling induced by C2CD4B. These data demonstrate, for the first time, that C2CD4B exerts a direct effect on vascular endothelium via a phosphoinositide 3-kinase (PI3K)/Akt/PKCα-signaling pathway, providing a new perspective on C2CD4B as a promising therapeutic target for the prevention of oxidative stress in diabetes-induced endothelial dysfunction.

3.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37144413

RESUMO

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Animais , Camundongos , Ratos , Pressão Sanguínea , Endotélio Vascular/metabolismo , Hipertensão/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Endogâmicos SHR , Acidente Vascular Cerebral/genética , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Vasodilatação
4.
Biomolecules ; 13(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671552

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors. In experimental in vivo models, pharmacological inhibition of de novo ceramide synthesis averts the development of diabetes, atherosclerosis, hypertension and heart failure. In humans, levels of circulating sphingolipids have been suggested as prognostic indicators for a broad spectrum of diseases. This article provides a comprehensive review of sphingolipids' contribution to cardiovascular, cerebrovascular and metabolic diseases, focusing on the latest experimental and clinical findings. Cumulatively, these studies indicate that monitoring sphingolipid level alterations could allow for better assessment of cardiovascular disease progression and/or severity, and also suggest them as a potential target for future therapeutic intervention. Some approaches may include the down-regulation of specific sphingolipid species levels in the circulation, by inhibiting critical enzymes that catalyze ceramide metabolism, such as ceramidases, sphingomyelinases and sphingosine kinases. Therefore, manipulation of the sphingolipid pathway may be a promising strategy for the treatment of cardio- and cerebrovascular diseases.


Assuntos
Ceramidas , Esfingolipídeos , Humanos , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Esfingosina/metabolismo , Pulmão/metabolismo , Ceramidases/metabolismo , Lisofosfolipídeos/metabolismo , Biomarcadores
5.
Cell Mol Life Sci ; 79(8): 410, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821533

RESUMO

Beyond well-assessed risk factors, cardiovascular events could be also associated with the presence of epigenetic and genetic alterations, such as the methylenetetrahydrofolate-reductase (MTHFR) C677T polymorphism. This gene variant is related to increased circulating levels of homocysteine (Hcy) and cardiovascular risk. However, heterozygous carriers have an augmented risk of cardiovascular accidents independently from normal Hcy levels, suggesting the presence of additional deregulated processes in MTHFR C677T carriers. Here, we hypothesize that targeting Sirtuin 1 (SIRT1) could be an alternative mechanism to control the cardiovascular risk associated to MTHFR deficiency condition. Flow Mediated Dilatation (FMD) and light transmission aggregometry assay were performed in subjects carrying MTHFR C677T allele after administration of resveratrol, the most powerful natural clinical usable compound that owns SIRT1 activating properties. MTHFR C677T carriers with normal Hcy levels revealed endothelial dysfunction and enhanced platelet aggregation associated with SIRT1 downregulation. SIRT1 activity stimulation by resveratrol intake was able to override these abnormalities without affecting Hcy levels. Impaired endothelial function, bleeding time, and wire-induced thrombus formation were rescued in a heterozygous Mthfr-deficient (Mthfr+/-) mouse model after resveratrol treatment. Using a cell-based high-throughput multiplexed screening (HTS) assay, a novel selective synthetic SIRT1 activator, namely ISIDE11, was identified. Ex vivo and in vivo treatment of Mthfr+/- mice with ISIDE11 rescues endothelial vasorelaxation and reduces wire-induced thrombus formation, effects that were abolished by SIRT1 inhibitor. Moreover, platelets from MTHFR C677T allele carriers treated with ISIDE11 showed normalization of their typical hyper-reactivity. These results candidate SIRT1 activation as a new therapeutic strategy to contain cardio and cerebrovascular events in MTHFR carriers.


Assuntos
Homocistinúria , Metilenotetra-Hidrofolato Redutase (NADPH2) , Sirtuína 1 , Trombose , Animais , Genótipo , Homocistinúria/tratamento farmacológico , Homocistinúria/metabolismo , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Camundongos , Espasticidade Muscular , Transtornos Psicóticos/metabolismo , Resveratrol/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Trombose/tratamento farmacológico , Trombose/genética , Trombose/metabolismo , Trombose/prevenção & controle
6.
J Pharm Biomed Anal ; 217: 114827, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35569273

RESUMO

COVID-19 infection evokes various systemic alterations that push patients not only towards severe acute respiratory syndrome but causes an important metabolic dysregulation with following multi-organ alteration and potentially poor outcome. To discover novel potential biomarkers able to predict disease's severity and patient's outcome, in this study we applied untargeted lipidomics, by a reversed phase ultra-high performance liquid chromatography-trapped ion mobility mass spectrometry platform (RP-UHPLC-TIMS-MS), on blood samples collected at hospital admission in an Italian cohort of COVID-19 patients (45 mild, 54 severe, 21 controls). In a subset of patients, we also collected a second blood sample in correspondence of clinical phenotype modification (longitudinal population). Plasma lipid profiles revealed several lipids significantly modified in COVID-19 patients with respect to controls and able to discern between mild and severe clinical phenotype. Severe patients were characterized by a progressive decrease in the levels of LPCs, LPC-Os, PC-Os, and, on the contrary, an increase in overall TGs, PEs, and Ceramides. A machine learning model was built by using both the entire dataset and with a restricted lipid panel dataset, delivering comparable results in predicting severity (AUC= 0.777, CI: 0.639-0.904) and outcome (AUC= 0.789, CI: 0.658-0.910). Finally, re-building the model with 25 longitudinal (t1) samples, this resulted in 21 patients correctly classified. In conclusion, this study highlights specific lipid profiles that could be used monitor the possible trajectory of COVID-19 patients at hospital admission, which could be used in targeted approaches.


Assuntos
COVID-19 , Lipidômica , Biomarcadores , Humanos , Espectrometria de Mobilidade Iônica , Lipídeos
7.
Antioxidants (Basel) ; 11(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35624759

RESUMO

Omega-3 fatty acids have been shown to exert several beneficial effects in the prevention of cardiovascular and cerebrovascular diseases. The objective of the present study was to analyze the effects of a novel high-load omega-3 lysine complex, AvailOm®, its related constituents and a novel mixture of AvailOm® with specific vasoactive anthocyanins on vascular function in mice resistance artery. Pressure myograph was used to perform vascular reactivity studies. Nitric oxide and oxidative stress were assessed by difluorofluorescein diacetate and dihydroethidium, respectively. Increasing doses of AvailOm® exerted a dose-response vasorelaxation via AMPK-eNOS-mediated signaling. Omega-3 Ethyl Ester was identified as the main bioactive derivative of AvailOm®, being capable of inducing vasorelaxant action to the same extent of entire product. The combination of AvailOm® with a mix of potent vasoactive anthocyanins (C3-glu + DP3-glu + Mal3-glu + Mal3-gal + PEO3-gal), strongly protected mesenteric arteries from vascular dysfunction and oxidative stress evoked by oxidized-LDL. These data demonstrate for the first time the direct effects of AvailOm® on resistance arteries. The evidence that the combination of specific vasoactive anthocyanins and AvailOm® further enhanced the vasculoprotective properties of these compounds, may offer new promising perspectives for preventing the onset of cardiovascular and cerebrovascular events.

8.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104805

RESUMO

Sortilin has been positively correlated with vascular disorders in humans. No study has yet evaluated the possible direct effect of sortilin on vascular function. We used pharmacological and genetic approaches coupled with study of murine and human samples to unravel the mechanisms recruited by sortilin in the vascular system. Sortilin induced endothelial dysfunction of mesenteric arteries through NADPH oxidase 2 (NOX2) isoform activation, dysfunction that was prevented by knockdown of acid sphingomyelinase (ASMase) or sphingosine kinase 1. In vivo, recombinant sortilin administration induced arterial hypertension in WT mice. In contrast, genetic deletion of sphingosine-1-phosphate receptor 3 (S1P3) and gp91phox/NOX2 resulted in preservation of endothelial function and blood pressure homeostasis after 14 days of systemic sortilin administration. Translating these research findings into the clinical setting, we detected elevated sortilin levels in hypertensive patients with endothelial dysfunction. Furthermore, in a population-based cohort of 270 subjects, we showed increased plasma ASMase activity and increased plasma levels of sortilin, S1P, and soluble NOX2-derived peptide (sNOX2-dp) in hypertensive subjects, and the increase was more pronounced in hypertensive subjects with uncontrolled blood pressure. Our studies reveal what we believe is a previously unrecognized role of sortilin in the impairment of vascular function and in blood pressure homeostasis and suggest the potential of sortilin and its mediators as biomarkers for the prediction of vascular dysfunction and high blood pressure.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/metabolismo , Esfingosina/análogos & derivados , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Endotélio Vascular/lesões , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Lisofosfolipídeos/genética , Camundongos , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética , Esfingosina/genética , Esfingosina/metabolismo
9.
Antioxidants (Basel) ; 10(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34439440

RESUMO

In recent years, epidemiological studies have identified a relationship between diet and cerebro-cardiovascular disease (CVD). In this regard, there is a promising dietary group for cardiovascular protection are polyphenols, especially anthocyanins. Vascular reactivity studies were performed using Healthberry 865® and constituent single anthocyanins to characterize vasomotor responses; immunofluorescence analysis with dichlorofluorescein diacetate and dihydroethidium were used to evaluate nitric oxide and oxidative stress; lucigenin assay was used to measure NADPH oxidase activity; and gel electrophoresis and immunoblotting were used to dissect the molecular mechanisms involved. We demonstrated that Healthberry 865® exerts an important vasorelaxant effect of resistance artery functions in mice. Its action is mediated by nitric oxide release through the intracellular signaling PI3K/Akt. Moreover, behind its capability of modulating vascular tone, it also exerts an important antioxidant effect though the modulation of the NADPH oxidase enzyme. Interestingly, its cardiovascular properties are mediated by the selective action of different anthocyanins. Finally, the exposure of human dysfunctional vessels to Healthberry 865® significantly reduces oxidative stress and improves NO bioavailability. Although further investigations are needed, our data demonstrate the direct role of Healthberry 865® on the modulation of vasculature, both on the vasorelaxation and on oxidative stress; thus, supporting the concept that a pure mixture of anthocyanins could be helpful in preventing the onset of vascular dysfunction associated with the development of CVD.

10.
J Pharm Biomed Anal ; 201: 114107, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33984828

RESUMO

Bitter acids are a class of prenylated phloroglucinol derivatives present in Humulus lupulus L., known for their multiple healthy properties, nevertheless, research regarding their metabolism and stability is lacking. This study was aimed to elucidate the metabolic stability of hop α- and ß-acids and characterize I and II phase metabolites in vitro and in vivo. For this purpose, an ultra high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method was developed and validated. Mice liver microsomes were used to assess metabolic stability; in vitro t1/2 and clearance values were calculated, showing a moderate metabolism for α-acids (avgt1/2: 120.01 min, avgCLint 11.96 µL/min/mg), while ß-acids were metabolized faster (avgt1/2: 103.01 min, avgCLint: 13.83 µL/min/mg). I and II phase metabolites were characterized both in in vitro, and in vivo, in mouse plasma and urine after oral administration. A combined full scan/data dependent/precursor ion list-triggered neutral loss (FS/dd-MS2/PIL-tNL) strategy was used to detect unknown and expected metabolites. As a result, 33 compounds were detected, including novel metabolites, such as 9 potential oxidized metabolites of humulones (M6-M14), and 10 glucuronide conjugates of α-acids, comprising 7 glucuronide derivatives of oxidized phase I metabolites (M26-M32). The proposed method extends the current knowledge regarding metabolization of hop α- and ß-acids and could be applied for the comprehension of the metabolic fate of this class of compounds in different species, as well as for in vivo pharmacokinetic studies.


Assuntos
Humulus , Ácidos , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Camundongos , Extratos Vegetais
11.
Life (Basel) ; 11(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801080

RESUMO

Recent scientific literature has investigated the cardiovascular implications of COVID-19. The mechanisms of cardiovascular damage seem to involve the protein angiotensin-converting enzyme 2 (ACE2), to which severe acute respiratory syndrome (SARS) coronavirus-2 (CoV-2) binds to penetrate cells and other mechanisms, most of which are still under study. Cardiovascular sequelae of COVID-19 include heart failure, cardiomyopathy, acute coronary syndrome, arrhythmias, and venous thromboembolism. This article aims to collect scientific evidence by exploiting PubMed, Scopus, and Pedro databases to highlight the cardiovascular complications of COVID-19 and to define the physiotherapy treatment recommended for these patients. Exercise training (ET), an important part of cardiac rehabilitation, is a powerful tool in physiotherapy, capable of inducing significant changes in the cardiovascular system and functional in the recovery of endothelial dysfunction and for the containment of thromboembolic complications. In conclusion, due to the wide variety of possible exercise programs that can be obtained by combining intensity, duration, and speed in various ways, and by adjusting the program based on continuous patient monitoring, exercise training is well suited to the treatment of post-COVID patients with an impaired cardiovascular system of various degrees.

12.
Antioxidants (Basel) ; 10(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809389

RESUMO

BACKGROUND: Arterial hypertension is the most important risk factor for cardiovascular diseases, myocardial infarction, heart failure, renal failure and peripheral vascular disease. In the last decade, milk-derived bioactive peptides have attracted attention for their beneficial cardiovascular properties. METHODS: Here, we combined in vitro chemical assay such as LC-MS/MS analysis of buffalo ice cream, ex vivo vascular studies evaluating endothelial and smooth muscle responses using pressure myograph, and translational assay testing in vivo the vascular actions of PG1 administration in murine models. RESULTS: We demonstrate that a novel buffalo ice-cream-derived pentapeptide "QKEPM", namely PG1, is a stable peptide that can be obtained at higher concentration after gastro-intestinal digestions (GID) of buffalo ice-cream (BIC). It owns potent vascular effect in counteract the effects of angiotensin II-evoked vasoconstriction and high blood pressure levels. Its effects are mediated by the inhibitory effect on AT1 receptor leading to a downregulation of p-ERK½/Rac1-GTP and consequent reduction of oxidative stress. CONCLUSIONS: These results strongly candidate PG1, as a novel bioactive peptide for the prevention and management of hypertension, thus expanding the armamentarium of preventive strategies aimed at reducing the incidence and progression of hypertension and its related cardiovascular complications.

13.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218062

RESUMO

Cardiovascular diseases (CVDs) such as hypertension, atherosclerosis, myocardial infarction, and diabetes are a significant public health problem worldwide. Although several novel pharmacological treatments to reduce the progression of CVDs have been discovered during the last 20 years, the better way to contain the onset of CVDs remains prevention. In this regard, nutraceuticals seem to own a great potential in maintaining human health, exerting important protective cardiovascular effects. In the last years, there has been increased focus on identifying natural compounds with cardiovascular health-promoting effects and also to characterize the molecular mechanisms involved. Although many review articles have focused on the individual natural compound impact on cardiovascular diseases, the aim of this manuscript was to examine the role of the most studied nutraceuticals, such as resveratrol, cocoa, quercetin, curcumin, brassica, berberine and Spirulina platensis, on different CVDs.


Assuntos
Produtos Biológicos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Suplementos Nutricionais , Saúde/normas , Berberina/administração & dosagem , Berberina/uso terapêutico , Produtos Biológicos/administração & dosagem , Brassica/química , Curcumina/administração & dosagem , Curcumina/uso terapêutico , Quercetina/administração & dosagem , Quercetina/uso terapêutico , Resveratrol/administração & dosagem , Resveratrol/uso terapêutico , Spirulina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA