Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; 19(12): 1035-1050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686958

RESUMO

Background: To prepare ocular emulsions containing bipartitioned oil droplets to entrap cyclosporin A (0.05% w/w) and etodolac (0.2% w/w) by using castor, olive and silicon oils. Methods: The physicochemical characterizations of prepared emulsions were performed. The drug's biodistribution profiles and pharmacokinetic parameters from emulsions were checked using the ultraperformance liquid chromatography-tandem mass spectrometry method in the ocular tissues of the healthy rabbit eye model. Results: The emulsions displayed 365.13 ± 7.21 nm size and 26.45 ± 2.09 mV zeta potential. The ferrying of two drugs after releasing from emulsions occurred across corneal/conjunctival tissues to enter the vitreous and sclera following a single drop administration into the rabbit's eyes. Conclusion: The dual drug-loaded emulsions were more likely to produce synergistic anti-inflammatory activity for managing moderate-to-severe dry eye disease.


[Box: see text].


Assuntos
Ciclosporina , Emulsões , Etodolac , Coelhos , Animais , Emulsões/química , Ciclosporina/farmacocinética , Ciclosporina/administração & dosagem , Ciclosporina/química , Etodolac/química , Distribuição Tecidual , Tamanho da Partícula , Síndromes do Olho Seco/tratamento farmacológico , Óleo de Rícino/química , Cátions/química , Óleos de Silicone/química , Azeite de Oliva/química , Córnea/efeitos dos fármacos , Córnea/metabolismo , Soluções Oftálmicas/química , Humanos , Liberação Controlada de Fármacos
2.
Acta Biomater ; 171: 289-307, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683964

RESUMO

Corneal scarring and opacification are a significant cause of blindness affecting millions worldwide. The current standard of care for corneal blindness is corneal transplantation, which suffers from several drawbacks. One alternative approach that has shown promise is the use of xenogeneic corneal extracellular matrix (ECM), but its clinical applicability is challenging due to safety concerns. This study reports the innovative use of human cornea-derived ECM to prevent post-traumatic corneal scarring. About 30 - 40% of corneas donated to the eye banks do not meet the standards defined for clinical use and are generally discarded, although they are completely screened for their safety. In this study, human cornea-derived decellularized ECM hydrogel was prepared from the non-transplantation grade human cadaveric corneas obtained from an accredited eye-bank. The prepared hydrogel was screened for its efficacy against corneal opacification following an injury in an animal model. Our in vivo study revealed that, the control collagen-treated group developed corneal opacification, while the prophylactic application of human cornea-derived hydrogel effectively prevented corneal scarring and opacification. The human hydrogel-treated corneas were indistinguishable from healthy corneas and comparable to those treated with the xenogeneic bovine corneal hydrogel. We also demonstrated that the application of the hydrogel retained the biological milieu including cell behavior, protein components, optical properties, curvature, and nerve regeneration by remodeling the corneal wound after injury. The hydrogel application is also sutureless, resulting in faster corneal healing. We envision that this human cornea-derived ECM-based hydrogel has potential clinical application in preventing scarring from corneal wounding. STATEMENT OF SIGNIFICANCE: There are significant challenges surrounding corneal regeneration after injury due to extensive scarring. Although there is substantial research on corneal regeneration, much of it uses synthetic materials with chemical cross-linking methods or xenogeneic tissue-based material devices which have to undergo exhaustive safety analysis before clinical trials. Herein, we demonstrate the potential application of a human corneal extracellular matrix hydrogel without any additional materials for scarless corneal tissue regeneration, and a method to reduce the wasting of donated allogenic corneal tissue from eye banks. We found no difference in efficacy between the usage of human tissues compared to xenogeneic sources. This may help ease clinical translation and can be used topically without sutures as an outpatient procedure.


Assuntos
Cicatriz , Lesões da Córnea , Humanos , Animais , Bovinos , Cicatriz/prevenção & controle , Cicatriz/tratamento farmacológico , Hidrogéis/farmacologia , Hidrogéis/química , Córnea/cirurgia , Matriz Extracelular/química , Cegueira
3.
Drug Deliv Transl Res ; 13(6): 1654-1674, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36595152

RESUMO

Cyclosporin A (CsA, 0.05% w/w)-loaded positively charged emulsions were prepared based on castor oil, chitosan, poloxamer 188, glycerin and double-distilled water. To augment the shelf/storage-stability of original emulsions, the solid-dry powder for reconstitution was made by spray drying technique. The screening (Taguchi OA) and optimization (face-centered central composite) designs produced the optimized conditions for spray drying: 40 Nm3/h aspirator flow rate, 15 ml/min feed rate, 115 °C inlet temperature, 10% mannitol and 1.25% trehalose. The % drug entrapment efficiency values of original and reconstituted emulsions ranged from 73.20 ± 0.13 to 71.55 ± 1.25%. At 20 min post-dissolution, two times higher CsA release was seen from reconstituted emulsions than the original emulsions (85.78 ± 1.14 vs. 42.25 ± 1.84%) in simulated tear fluid. Using MTT assay, the reconstituted emulsions with or without CsA produced 94.512 ± 2.12 to 99.941 ± 1.89% cell viability values in HCE-2 cells. No appreciable change in capillary integrity was visualized in HET CAM following reconstituted emulsions treatment. At equivalent 15 µg drug, the in vitro protein denaturation assay showed augmented inhibition value (~ 85%) for tested CsA emulsions compared to diclofenac reference (68.30 ± 2.05) indicating enhanced anti-inflammatory activity. The CsA concentrations in multiple ocular matrices of rabbit eyes determined by the UPLC-MS/MS method attained the therapeutic drug level of 50-300 ng/ml even at 90 min post-topical instillation of both emulsions. Overall, the CsA emulsion eyedrops can be supplied as a spray dried storable intermediate product for reconstitution.


Assuntos
Ciclosporina , Espectrometria de Massas em Tandem , Animais , Coelhos , Emulsões , Cromatografia Líquida , Olho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA