Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 36(5): 2012-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26202361

RESUMO

BACKGROUND: Neuregulin (NRG)-1-human epidermal receptor (HER)-2 signaling pathway is a key regulator of IL-1ß-mediated pulmonary inflammation and epithelial permeability. The inflammasome is a newly discovered molecular platform required for caspase-1 activation and maturation of IL-1ß. However, the role of the inflammasome in NRG-1-HER2 signaling-mediated alveolar cell permeability is unknown. METHODS: The inflammasome was activated or inhibited in THP-1 cells; supernatants from these cells were added to A549 cells and human small airway epithelial cells (HSAEC). The protein expression of NRG-1 and phospho-HER2 (pHER2) were measured by Western blot analysis and epithelial permeability was measured using Lucifer yellow dye. RESULTS: Results reveal that alveolar permeability in A549 cells and HSAEC is increased when treated with supernatants of inflammasome-activated THP-1 cells. Alveolar permeability is significantly suppressed when treated with supernatant of inflammasome-inhibited THP-1 cells. Inflammasome-mediated permeability is decreased when A549 cells and HSAEC are pretreated with IL-1ß receptor antagonist (IL-1ßRA). In addition, HER2 kinase inhibitor AG825 or NRG-1 inhibitor TAPI inhibits inflammasome-mediated permeability in A549 cells and HSAEC demonstrating critical roles of IL-1ß, NRG-1, and HER2 in inflammasome-mediated alveolar permeability. CONCLUSION: These findings suggest that inflammasome-induced alveolar cell permeability is mediated by NRG-1/HER2 signaling through IL-1ß regulation.


Assuntos
Inflamassomos , Neuregulina-1/metabolismo , Linhagem Celular Tumoral , Genes erbB-2 , Humanos , Interleucina-1beta/metabolismo , Alvéolos Pulmonares
2.
Biochem Biophys Res Commun ; 439(3): 407-12, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23988448

RESUMO

Inflammasomes are multimeric protein complexes involved in the processing of IL-1ß through Caspase-1 cleavage. NLRP3 is the most widely studied inflammasome, which has been shown to respond to a large number of both endogenous and exogenous stimuli. Although studies have begun to define basic pathways for the activation of inflammasome and have been instrumental in identifying therapeutics for inflammasome related disorders; understanding the inflammasome activation at the molecular level is still incomplete. Recent functional studies indicate that microRNAs (miRs) regulate molecular pathways and can lead to diseased states when hampered or overexpressed. Mechanisms involving the miRNA regulatory network in the activation of inflammasome and IL-1ß processing is yet unknown. This report investigates the involvement of miR-133a-1 in the activation of inflammasome (NLRP3) and IL-1ß production. miR-133a-1 is known to target the mitochondrial uncoupling protein 2 (UCP2). The role of UCP2 in inflammasome activation has remained elusive. To understand the role of miR-133a-1 in regulating inflammasome activation, we either overexpressed or suppressed miR-133a-1 in differentiated THP1 cells that express the NLRP3 inflammasome. Levels of Caspase-1 and IL-1ß were analyzed by Western blot analysis. For the first time, we showed that overexpression of miR-133a-1 increases Caspase-1 p10 and IL-1ß p17 cleavage, concurrently suppressing mitochondrial uncoupling protein 2 (UCP2). Surprisingly, our results demonstrated that miR-133A-1 controls inflammasome activation without affecting the basal expression of the individual inflammasome components NLRP3 and ASC or its immediate downstream targets proIL-1ß and pro-Caspase-1. To confirm the involvement of UCP2 in the regulation of inflammasome activation, Caspase-1 p10 and IL-1ß p17 cleavage in UCP2 of overexpressed and silenced THP1 cells were studied. Suppression of UCP2 by siRNA enhanced the inflammasome activity stimulated by H2O2 and, conversely, overexpression of UCP2 decreased the inflammasome activation. Collectively, these studies suggest that miR-133a-1 suppresses inflammasome activation via the suppression of UCP2.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Canais Iônicos/imunologia , MicroRNAs/imunologia , Proteínas Mitocondriais/imunologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/genética , Caspase 1/imunologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Regulação para Baixo , Inativação Gênica , Humanos , Canais Iônicos/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína Desacopladora 2 , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA