Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Epidemiol ; 8(4): e323, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39045485

RESUMO

Background: Epidemiological evidence suggests that long-term exposure to outdoor ultrafine particles (UFPs, <0.1 µm) may have important human health impacts. However, less is known about the acute health impacts of these pollutants as few models are available to estimate daily within-city spatiotemporal variations in outdoor UFPs. Methods: Several machine learning approaches (i.e., generalized additive models, random forest models, and extreme gradient boosting) were used to predict daily spatiotemporal variations in outdoor UFPs (number concentration and size) across Montreal and Toronto, Canada using a large database of mobile monitoring measurements. Separate models were developed for each city and all models were evaluated using a 10-fold cross-validation procedure. Results: In total, our models were based on measurements from 12,705 road segments in Montreal and 10,929 road segments in Toronto. Daily median outdoor UFP number concentrations varied substantially across both cities with 1st-99th percentiles ranging from 1389 to 181,672 in Montreal and 2472 to 118,544 in Toronto. Outdoor UFP size tended to be smaller in Montreal (mean [SD]: 34 nm [15]) than in Toronto (mean [SD]: 44 nm [25]). Extreme gradient boosting models performed best and explained the majority of spatiotemporal variations in outdoor UFP number concentrations (Montreal, R 2: 0.727; Toronto, R 2: 0.723) and UFP size (Montreal, R 2: 0.823; Toronto, R 2: 0.898) with slopes close to one and intercepts close to zero for relationships between measured and predicted values. Conclusion: These new models will be applied in future epidemiological studies examining the acute health impacts of outdoor UFPs in Canada's two largest cities.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38924496

RESUMO

RATIONALE: Outdoor fine particulate air pollution (PM2.5) contributes to millions of deaths around the world each year, but much less is known about the long-term health impacts of other particulate air pollutants including ultrafine particles (a.k.a. nanoparticles) which are in the nanometer size range (<100 nm), widespread in urban environments, and not currently regulated. OBJECTIVES: Estimate the associations between long-term exposure to outdoor ultrafine particles and mortality. METHODS: Outdoor air pollution levels were linked to the residential addresses of a large, population-based cohort from 2001 - 2016. Associations between long-term exposure to outdoor ultrafine particles and nonaccidental and cause-specific mortality were estimated using Cox proportional hazards models. MEASUREMENTS: An increase in long-term exposure to outdoor ultrafine particles was associated with an increased risk of nonaccidental mortality (Hazard Ratio = 1. 073, 95% Confidence Interval = 1. 061, 1. 085) and cause-specific mortality, the strongest of which was respiratory mortality (Hazard Ratio = 1.174, 95% Confidence Interval = 1.130, 1.220). MAIN RESULTS: Long-term exposure to outdoor ultrafine particles was associated with increased risk of mortality. We estimated the mortality burden for outdoor ultrafine particles in Montreal and Toronto, Canada to be approximately 1100 additional nonaccidental deaths every year. Furthermore, we observed possible confounding by particle size which suggests that previous studies may have underestimated or missed important health risks associated with ultrafine particles. CONCLUSIONS: As outdoor ultrafine particles are not currently regulated, there is great potential for future regulatory interventions to improve population health by targeting these common outdoor air pollutants.

3.
Sci Total Environ ; 920: 170947, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367734

RESUMO

Understanding the relationships between ultrafine particle (UFP) exposure, socioeconomic status (SES), and sustainable transportation accessibility in Toronto, Canada is crucial for promoting public health, addressing environmental justice, and ensuring transportation equity. We conducted a large-scale mobile measurement campaign and employed a gradient boost model to generate exposure surfaces using land use, built environment, and meteorological conditions. The Ontario Marginalization Index was used to quantify various indicators of social disadvantage for Toronto's neighborhoods. Our findings reveal that people in socioeconomically disadvantaged areas experience elevated UFP exposures. We highlight significant disparities in accessing sustainable transportation, particularly in areas with higher ethnic concentrations. When factoring in daily mobility, UFP exposure disparities in disadvantaged populations are further exacerbated. Furthermore, individuals who do not generate emissions themselves are consistently exposed to higher UFPs, with active transportation users experiencing the highest UFP exposures both at home and at activity locations. Finally, we proposed a novel index, the Community Prioritization Index (CPI), incorporating three indicators, including air quality, social disadvantage, and sustainable transportation. This index identifies neighborhoods experiencing a triple burden, often situated near major infrastructure hubs with high diesel truck activity and lacking greenspace, marking them as high-priority areas for policy action and targeted interventions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Emissões de Veículos/análise , Material Particulado/análise , Poluição do Ar/análise , Ontário , Pobreza
4.
Environ Int ; 178: 108106, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544265

RESUMO

BACKGROUND: Concentrations of outdoor ultrafine particles (UFP; <0.1 µm) and black carbon (BC) can vary greatly within cities and long-term exposures to these pollutants have been associated with a variety of adverse health outcomes. OBJECTIVE: This study integrated multiple approaches to develop new models to estimate within-city spatial variations in annual median (i.e. average) outdoor UFP and BC concentrations as well as mean UFP size in Canada's two largest cities, Montreal and Toronto. METHODS: We conducted year-long mobile monitoring campaigns in each city that included evenings and weekends. We developed generalized additive models trained on land use parameters and deep Convolutional Neural Network (CNN) models trained on satellite-view images. Using predictions from these models, we developed final combined models. RESULTS: In Toronto, the median observed UFP concentration, UFP size, and BC concentration values were 16,172pt/cm3, 33.7 nm, and 1225 ng/m3, respectively. In Montreal, the median observed UFP concentration, UFP size, and BC concentration values were 14,702pt/cm3, 29.7 nm, and 1060 ng/m3, respectively. For all pollutants in both cities, the proportion of spatial variation explained (i.e., R2) was slightly greater (1-2 percentage points) for the combined models than the generalized additive models and a greater (approximately 10 percentage points) than the deep CNN models. The Toronto combined model R2 values in the test set were 0.73, 0.55, and 0.61 for UFP concentrations, UFP size, and BC concentration, respectively. The Montreal combined model R2 values were 0.60, 0.49, and 0.60 for UFP concentration, UFP size, and BC concentration models respectively. For each pollutant, predictions from the combined, deep CNN, and generalized additive models were highly correlated with each other and differences between models were explored in sensitivity analyses. CONCLUSION: Predictions from these models are available to support future epidemiological research examining long-term health impacts of outdoor UFPs and BC.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aprendizado Profundo , Poluentes Ambientais , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Canadá , Poluentes Ambientais/análise , Fuligem/análise , Tamanho da Partícula , Poluição do Ar/análise
5.
Environ Sci Technol ; 56(18): 12886-12897, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044680

RESUMO

Within-city ultrafine particle (UFP) concentrations vary sharply since they are influenced by various factors. We developed prediction models for short-term UFP exposures using street-level images collected by a camera installed on a vehicle rooftop, paired with air quality measurements conducted during a large-scale mobile monitoring campaign in Toronto, Canada. Convolutional neural network models were trained to extract traffic and built environment features from images. These features, along with regional air quality and meteorology data were used to predict short-term UFP concentration as a continuous and categorical variable. A gradient boost model for UFP as a continuous variable achieved R2 = 0.66 and RMSE = 9391.8#/cm3 (mean values for 10-fold cross-validation). The model predicting categorical UFP achieved accuracies for "Low" and "High" UFP of 77 and 70%, respectively. The presence of trucks and other traffic parameters were associated with higher UFPs, and the spatial distribution of elevated short-term UFP followed the distribution of single-unit trucks. This study demonstrates that pictures captured on urban streets, associated with regional air quality and meteorology, can adequately predict short-term UFP exposure. Capturing the spatial distribution of high-frequency short-term UFP spikes in urban areas provides crucial information for the management of near-road air pollution hot spots.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA