Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Total Environ ; 856(Pt 2): 159128, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181820

RESUMO

On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d-1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg-1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.


Assuntos
Ração Animal , Metano , Animais , Bovinos , Ração Animal/análise , América Latina , Dieta/veterinária , Ingestão de Alimentos
2.
Front Vet Sci ; 9: 863910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051539

RESUMO

In this study, the effects of orange essential oil (OEO) on the rumen fermentation, nutrient utilization, and methane (CH4) emissions of beef heifers fed a diet of bermudagrass (Cynodon dactylon) were examined. In addition, in vitro and in situ experiments were conducted. The in vitro experiment consisted of three treatments: control (CTL, no OEO), OEO1 (0.25% OEO), and OEO2 (0.5% OEO). The forage to concentrate ratio was 70:30 (dry matter [DM] basis) in all treatments. No changes in pH, proportions of volatile fatty acids, and the acetate:propionate ratio were observed (P > 0.05). The addition of 0.25% OEO resulted in a reduction in CH4 production (mL/g) relative to the control (P < 0.05). In the in situ experiment, 5 g of total mixed ration (CTL, OEO1, and OEO2) were incubated for 6, 12, 24, 48, and 72 h. Potential and effective degradability were not affected by OEO supplementation (P > 0.05). In the in vivo study, six crossbred beef heifers (Bos indicus × Bos taurus), fitted with rumen cannulas, were assigned to three different treatments: no additive (CTL), 0.25% OEO (OEO1), and 0.5% OEO (OEO2) in a replicated 3 × 3 Latin square (21-day periods). Heifers were fed at 2.8% body weight. In vivo CH4 production was measured in open-circuit respiration chambers. Reductions in gross energy consumption, apparent total tract digestibility, and rumen valerate concentration were observed for OEO2 compared to the control (P < 0.05). Additionally, decreases in CH4 emissions (g/day; P < 0.05) and CH4 (MJ gross energy intake/day; P < 0.05) were observed in response to supplementation of 0.5% OEO as compared to the CTL treatment. Thus, supplementation of 0.5% OEO reduced CH4 emissions (g/day) by 12% without impacting the DM intake of heifers fed bermudagrass hay as a basal ration.

3.
Psychometrika ; 86(4): 893-919, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34185214

RESUMO

PCA is a popular tool for exploring and summarizing multivariate data, especially those consisting of many variables. PCA, however, is often not simple to interpret, as the components are a linear combination of the variables. To address this issue, numerous methods have been proposed to sparsify the nonzero coefficients in the components, including rotation-thresholding methods and, more recently, PCA methods subject to sparsity inducing penalties or constraints. Here, we offer guidelines on how to choose among the different sparse PCA methods. Current literature misses clear guidance on the properties and performance of the different sparse PCA methods, often relying on the misconception that the equivalence of the formulations for ordinary PCA also holds for sparse PCA. To guide potential users of sparse PCA methods, we first discuss several popular sparse PCA methods in terms of where the sparseness is imposed on the loadings or on the weights, assumed model, and optimization criterion used to impose sparseness. Second, using an extensive simulation study, we assess each of these methods by means of performance measures such as squared relative error, misidentification rate, and percentage of explained variance for several data generating models and conditions for the population model. Finally, two examples using empirical data are considered.


Assuntos
Algoritmos , Simulação por Computador , Análise de Componente Principal , Psicometria
4.
Anim Sci J ; 90(9): 1303-1312, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31317611

RESUMO

Yield, chemical composition, fatty acid profile, and sensory acceptability of Panela cheese produced from cows grazing in an intensive silvopastoral system (ISS) with Leucaena leucocephala and Cynodon nlemfuensis were evaluated and compared with Panela cheese from cows grazing a monoculture system (MS) of C. nlemfuensis only. The experiment lasted for 9 weeks in a tropical area in Mexico using ten crossbred cows (30-90 days of milking) assigned homogenously as five cows in each experimental group. No significant differences were found between the two systems for milk and cheese gross composition. Panela cheese from ISS showed lower content of the hypercholesterolemic fatty acids, accompanied with higher content of omega-3, omega-6 and polyunsaturated fatty acids. In addition, Panela cheese from ISS showed higher preference for the attributes of appearance, texture, flavor, and overall acceptability. It is concluded that Panela cheese from cows grazing in ISS has better acceptability and nutritional properties than that produced from MS with grass only.


Assuntos
Queijo/análise , Ácidos Graxos/análise , Leite/química , Animais , Bovinos , Fabaceae , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Insaturados/análise , Feminino , Herbivoria , Valor Nutritivo , Poaceae
5.
PLoS One ; 13(7): e0200264, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29990383

RESUMO

OI is a clinically and genetically heterogeneous disorder characterized by bone fragility. More than 90% of patients are heterozygous for mutations in type I collagen genes, COL1A1 and COL1A2, and a common mutation is substitution for an obligatory glycine in the triple helical Gly-X-Y repeats. Few non-glycine substitutions in the triple helical domain have been reported; most result in Y-position substitutions of arginine by cysteine. Here, we investigated leucine and cysteine substitutions for one Y-position arginine, p.Arg958 (Arg780 in the triple helical domain) of proα1(I) chains that cause mild OI. We compared their effects with two substitutions for glycine located in close proximity. Like substitutions for glycine, those for arginine reduced the denaturation temperature of the whole molecule and caused asymmetric posttranslational overmodification of the chains. Circular dichroism and increased susceptibility to cleavage by MMP1, MMP2 and catalytic domain of MMP1 revealed significant destabilization of the triple helix near the collagenase cleavage site. On a cellular level, we observed slower triple helix folding and intracellular collagen retention, which disturbed the Endoplasmic Reticulum function and affected matrix deposition. Molecular dynamic modeling suggested that Arg780 substitutions disrupt the triple helix structure and folding by eliminating hydrogen bonds of arginine side chains, in addition to preventing HSP47 binding. The pathogenic effects of these non-glycine substitutions in bone are probably caused mostly by procollagen misfolding and its downstream effects.


Assuntos
Arginina/metabolismo , Colágeno Tipo I/metabolismo , Osteogênese Imperfeita/metabolismo , Pró-Colágeno/metabolismo , Dicroísmo Circular , Colágeno Tipo I/genética , Humanos , Mutação , Osteogênese Imperfeita/genética , Pró-Colágeno/genética , Dobramento de Proteína
6.
Asian-Australas J Anim Sci ; 31(11): 1738-1746, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29103289

RESUMO

OBJECTIVE: The aim of the experiment was to assess the effect of increasing amounts of Leucaena leucocephala forage on dry matter intake (DMI), organic matter intake (OMI), enteric methane production, rumen fermentation pattern and protozoa population in cattle fed Pennisetum purpureum and housed in respiration chambers. METHODS: Five crossbred heifers (Bos taurus×Bos indicus) (BW: 295±6 kg) were fed chopped P. purpureum grass and increasing levels of L. leucocephala (0%, 20%, 40%, 60%, and 80% of dry matter [DM]) in a 5×5 Latin square design. RESULTS: The voluntary intake and methane production were measured for 23 h per day in respiration chambers; molar proportions of volatile fatty acids (VFAs) were determined at 6 h postprandial period. Molar concentration of VFAs in rumen liquor were similar (p>0.05) between treatments. However, methane production decreased linearly (p<0.005), recording a maximum reduction of up to ~61% with 80% of DM incorporation of L. leucocephala in the ration and no changes (p>0.05) in rumen protozoa population were found. CONCLUSION: Inclusion of 80% of L. leucocephala in the diet of heifers fed low-quality tropical forages has the capacity to reduce up to 61.3% enteric methane emission without affecting DMI, OMI, and protozoa population in rumen liquor.

7.
Biochem Biophys Res Commun ; 467(4): 1039-45, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26494300

RESUMO

Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were used to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells.


Assuntos
Androgênios/fisiologia , Osso e Ossos/metabolismo , Proliferação de Células , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Osso e Ossos/patologia , Linhagem Celular Tumoral , Humanos , Masculino
8.
Biochim Biophys Acta ; 1850(9): 1685-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25960389

RESUMO

BACKGROUND: Recombinant erythropoietin (EPO) has been marketed as biopharmaceutical for anemia and chronic renal failure. Long-acting EPO variants that aimed at achieving less frequent dosing have been generated, either by the addition of glycosylation sites or increasing its molecular weight. METHODS: The hEPO cDNA linked to the human IgG Fc fragment was cloned as a single codifying gene on the pAdtrack-CMV vector, yielding the recombinant adenoviral genome. For in vitro and in vivo expression assays cervical cancer cell line (SiHa) and nulliparous goats were used, respectively. The hematopoietic activity of EPO-Fc, expressed as the differential increment of hematocrit was evaluated in B6D2F1 mice. NP-HPLC of the 2AB-labeled N-glycan was carried out to profile analysis. RESULTS: The direct transduction of mammary secretory cells with adenoviral vector is a robust methodology to obtain high levels of EPO of up to 3.5mg/mL in goat's milk. SiHa-derived EPO-Fc showed significant improvement in hematopoietic activity compared to the commercial hEPO counterpart or with the homologous milk-derived EPO-Fc. The role of the molecular weight seemed to be important in enhancing the hematopoietic activity of SiHa-derived EPO-Fc. However, the lack of sialylated multi-antennary glycosylation profile in milk-derived EPO-Fc resulted in lower biological activity. CONCLUSIONS: The low content of tri- or tetra-antennary sialylated N-glycans linked to the chimeric EPO-Fc hormone, expressed in the goat mammary gland epithelial cells, defined its in vivo hematopoietic activity. GENERAL SIGNIFICANCE: The sialylated N-glycan content plays a more significant role in the in vivo biological activity of hEPO than its increased molecular weight.


Assuntos
Eritropoetina/farmacologia , Hematopoese/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/farmacologia , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Camundongos , Polissacarídeos/farmacologia
9.
J Cell Biochem ; 116(10): 2283-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25833220

RESUMO

The development and survival of male germ cells depend on the antioxidant capacity of the seminiferous tubule. Glutathione (GSH) plays an important role in the antioxidant defenses of the spermatogenic epithelium. Autophagy can act as a pro-survival response during oxidative stress or nutrient deficiency. In this work, we evaluated whether autophagy is involved in spermatogonia-type germ cell survival during severe GSH deficiency. We showed that the disruption of GSH metabolism with l-buthionine-(S,R)-sulfoximine (BSO) decreased reduced (GSH), oxidized (GSSG) glutathione content, and GSH/GSSG ratio in germ cells, without altering reactive oxygen species production and cell viability, evaluated by 2',7'-dichlorodihydrofluorescein (DCF) fluorescence and exclusion of propidium iodide assays, respectively. Autophagy was assessed by processing the endogenous protein LC3I and observing its sub-cellular distribution. Immunoblot and immunofluorescence analysis showed a consistent increase in LC3II and accumulation of autophagic vesicles under GSH-depletion conditions. This condition did not show changes in the level of phosphorylation of AMP-activated protein kinase (AMPK) or the ATP content. A loss in S-glutathionylated protein pattern was also observed. However, inhibition of autophagy resulted in decreased ATP content and increased caspase-3/7 activity in GSH-depleted germ cells. These findings suggest that GSH deficiency triggers an AMPK-independent induction of autophagy in germ cells as an adaptive stress response.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glutationa/metabolismo , Estresse Oxidativo/genética , Espermatogônias/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Trifosfato de Adenosina/biossíntese , Animais , Antioxidantes/metabolismo , Autofagia/genética , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glutationa/deficiência , Dissulfeto de Glutationa/metabolismo , Masculino , Camundongos , Propídio/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Túbulos Seminíferos/crescimento & desenvolvimento , Túbulos Seminíferos/metabolismo , Espermatogônias/crescimento & desenvolvimento
10.
PLoS One ; 9(8): e106219, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170920

RESUMO

Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells.


Assuntos
Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/metabolismo , Receptores Depuradores Classe E/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Depuradores Classe E/genética
12.
Evolution ; 67(4): 1105-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23550759

RESUMO

Oxygen conductance to the tissues determines aerobic metabolic performance in most eukaryotes but has cost/benefit tradeoffs. Here we examine in lowland populations of a butterfly a genetic polymorphism affecting oxygen conductance via the hypoxia-inducible factor (HIF) pathway, which senses intracellular oxygen and controls the development of oxygen delivery networks. Genetically distinct clades of Glanville fritillary (Melitaea cinxia) across a continental scale maintain, at intermediate frequencies, alleles in a metabolic enzyme (succinate dehydrogenase, SDH) that regulates HIF-1α. One Sdhd allele was associated with reduced SDH activity rate, twofold greater cross-sectional area of tracheoles in flight muscle, and better flight performance. Butterflies with less tracheal development had greater post-flight hypoxia signaling, swollen & disrupted mitochondria, and accelerated aging of flight metabolic performance. Allelic associations with metabolic and aging phenotypes were replicated in samples from different clades. Experimentally elevated succinate in pupae increased the abundance of HIF-1α and expression of genes responsive to HIF activation, including tracheal morphogenesis genes. These results indicate that the hypoxia inducible pathway, even in lowland populations, can be an important axis for genetic variation underlying intraspecific differences in oxygen delivery, physiological performance, and life history.


Assuntos
Borboletas/genética , Variação Genética , Fator 1 Induzível por Hipóxia/genética , Transdução de Sinais/genética , Envelhecimento , Alelos , Altitude , Animais , Borboletas/metabolismo , Ecossistema , Voo Animal , Genes de Insetos , Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , População/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Ácido Succínico/metabolismo , Traqueia/fisiologia , Transcrição Gênica
13.
Am J Physiol Cell Physiol ; 305(1): C90-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23615963

RESUMO

Resveratrol acts as a chemopreventive agent for cancer and as a potential antiobesity and antidiabetic compound, by leading to reduced body fat and improved glucose homeostasis. The exact mechanisms involved in improving hyperglycemic state are not known, but most of the glucose uptake into mammalian cells is facilitated by the GLUT hexose transporters. Resveratrol is structurally similar to isoflavones such as genistein, which inhibit the glucose uptake facilitated by the GLUT1 hexose transporter. Here we examined the direct effects of resveratrol on glucose uptake and accumulation in HL-60 and U-937 leukemic cell lines, which express mainly GLUT1, under conditions that discriminate transport from the intracellular substrate phosphorylation/accumulation. Resveratrol blocks GLUT1-mediated hexose uptake and thereby affects substrate accumulation on these cells. Consequently, we characterized the mechanism involved in inhibition of glucose uptake in human red cells. Resveratrol inhibits glucose exit in human red cells, and the displacement of previously bound cytochalasin B revealed the direct interaction of resveratrol with GLUT1. Resveratrol behaves as a competitive blocker of glucose uptake under zero-trans exit and exchange kinetic assays, but it becomes a mixed noncompetitive blocker when zero-trans entry transport was assayed, suggesting that the binding site for resveratrol lies on the endofacial face of the transporter. We propose that resveratrol interacts directly with the human GLUT1 hexose transporter by binding to an endofacial site and that this interaction inhibits the transport of hexoses across the plasma membrane. This inhibition is distinct from the effect of resveratrol on the intracellular phosphorylation/accumulation of glucose.


Assuntos
Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Estilbenos/farmacologia , Relação Dose-Resposta a Droga , Transportador de Glucose Tipo 1/genética , Células HL-60 , Humanos , Resveratrol , Células U937
14.
BMC Genet ; 14: 9, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23433436

RESUMO

BACKGROUND: Knowledge of genetic markers that are correlated to stress tolerance may improve spatial mapping of reef vulnerability and can inform restoration efforts, including the choice of genotypes for breeding and reseeding. In this manuscript we present two methods for screening transcriptome data for candidate genetic markers in two reef building corals, Acropora millepora and Pocillopora damicornis (types α and ß). In A. millepora, Single Nucleotide Polymorphisms (SNPs) were pre-selected by targeting genes believed to be involved in the coral thermal stress responses. In P. damicornis (type α and ß), SNPs showing varying allele frequencies between two populations from distinct environments were pre-selected. Allele frequencies at nine, five and eight of the pre-selected SNP loci were correlated against gradients of water clarity and temperature in a large number of populations along the Great Barrier Reef. RESULTS: A significant correlation between environmental category and SNP allele frequency was detected in up to 55% of the tested loci, which is an exceptional success rate for these types of tests. In P. damicornis, SNP allele frequencies of ß-hexosaminidase and Elongation factor 1-α were significantly correlated to temperature in type α and to temperature and/or water clarity respectively in type ß. Type α also showed a correlation between water clarity and SNP allele frequency in a gene of unknown function. In A. millepora, allele frequencies at five (ß-gamma crystallin, Galaxin, Ubiquitin, Ligand of Numb X2 and Thioredoxin) SNP loci showed significant correlations. CONCLUSIONS: After validation of these candidate loci through laboratory or field assessment of relative stress tolerance of colonies harbouring different alleles, it is anticipated that a proportion of these markers may represent the first coral candidate Quantitative Trait Loci for environmental stress tolerance and provide an important genetic tool that can be incorporated into spatial management decisions and restoration efforts of coral reefs. One pertinent example would be to combine spatial data of tolerant populations with genetic connectivity and thus identify high priority conservation reefs and implement targeted coral husbandry and active restoration efforts that use locally- and stress-adapted genotypes.


Assuntos
Antozoários/genética , Recifes de Corais , Interação Gene-Ambiente , Estresse Fisiológico/genética , Animais , Clima , Frequência do Gene , Marcadores Genéticos , Genótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA , Transcriptoma
15.
Biochemistry ; 50(41): 8834-45, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21899256

RESUMO

The facilitative hexose transporter GLUT1 activity is blocked by tyrosine kinase inhibitors that include natural products such as flavones and isoflavones and synthetic compounds such as tyrphostins, molecules that are structurally unrelated to the transported substrates [Vera, et al. (2001) Biochemistry, 40, 777-790]. Here we analyzed the interaction of GLUT1 with quercetin (a flavone), genistein (an isoflavone), and tyrphostin A47 and B46 to evaluate if they share one common or have several binding sites on the protein. Kinetic assays showed that genistein, quercetin, and tyrphostin B46 behave as competitive inhibitors of equilibrium exchange and zero-trans uptake transport and noncompetitive inhibitors of net sugar exit out of human red cells, suggesting that they interact with the external surface of the GLUT1 molecule. In contrast, tyrphostin A47 was a competitive inhibitor of equilibrium exchange and zero-trans exit transport and a noncompetitive inhibitor of net sugar entry into red cells, suggesting that it interacts with the cytoplasmic surface of the transporter. Genistein protected GLUT1 against iodide-elicited fluorescence quenching and also decreased the affinity of d-glucose for its external binding site, while quercetin and tyrphostins B46 and A47 promoted fluorescence quenching and did not affect the external d-glucose binding site. These findings are explained by a carrier that presents at least three binding sites for tyrosine kinase inhibitors, in which (i) genistein interacts with the transporter in a conformation that binds glucose on the external surface (outward-facing conformation), in a site which overlaps with the external binding site for d-glucose, (ii) quercetin and tyrphostin B46 interact with the GLUT1 conformation which binds glucose by the internal side of the membrane (inward-facing conformation), but to a site accessible from the external surface of the protein, and (iii) the binding site for tyrphostin A47 is accessible from the inner surface of GLUT1 by binding to the inward-facing conformation of the transporter. These data provide groundwork for a molecular understanding of how the tyrosine kinase inhibitors directly affect glucose transport in animal cells.


Assuntos
Flavonas/química , Transportador de Glucose Tipo 1/química , Tirfostinas/química , Sítio Alostérico , Sítios de Ligação , Ligação Competitiva , Eritrócitos/metabolismo , Genisteína/farmacologia , Glucose/química , Humanos , Cinética , Proteínas de Transporte de Monossacarídeos/metabolismo , Conformação Proteica , Proteolipídeos/química , Espectrometria de Fluorescência/métodos
16.
Am J Physiol Cell Physiol ; 297(1): C86-93, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19386788

RESUMO

Gossypol is a natural disesquiterpene that blocks the activity of the mammalian facilitative hexose transporter GLUT1. In human HL-60 cells, which express GLUT1, Chinese hamster ovary cells overexpressing GLUT1, and human erythrocytes, gossypol inhibited hexose transport in a concentration-dependent fashion, indicating that blocking of GLUT1 activity is independent of cellular context. With the exception of red blood cells, the inhibition of cellular transport was instantaneous. Gossypol effect was specific for the GLUT1 transporter since it did not alter the uptake of nicotinamide by human erythrocytes. Gossypol affects the glucose-displaceable binding of cytochalasin B to GLUT1 in human erythrocyte ghost in a mixed noncompetitive way, with a K(i) value of 20 microM. Likewise, GLUT1 fluorescence was quenched approximately 80% by gossypol, while Stern-Volmer plots for quenching by iodide displayed increased slopes by gossypol addition. These effects on protein fluorescence were saturable and unaffected by the presence of D-glucose. Gossypol did not alter the affinity of D-glucose for the external substrate site on GLUT1. Kinetic analysis of transport revealed that gossypol behaves as a noncompetitive inhibitor of zero-trans (substrate outside but not inside) transport, but it acts as a competitive inhibitor of equilibrium-exchange (substrate inside and outside) transport, which is consistent with interaction at the endofacial surface, but not at the exofacial surface of the transporter. Thus, gossypol behaves as a quasi-competitive inhibitor of GLUT1 transport activity by binding to a site accessible through the internal face of the transporter, but it does not, in fact, compete with cytochalasin B binding. Our observations suggest that some effects of gossypol on cellular physiology may be related to its ability to disrupt the normal hexose flux through GLUT1, a transporter expressed in almost every kind of mammalian cell and responsible for the basal uptake of glucose.


Assuntos
Eritrócitos/efeitos dos fármacos , Transportador de Glucose Tipo 1/antagonistas & inibidores , Glucose/metabolismo , Gossipol/farmacologia , 3-O-Metilglucose/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Sítios de Ligação , Ligação Competitiva , Células CHO , Cricetinae , Cricetulus , Citocalasina B/metabolismo , Desoxiglucose/metabolismo , Relação Dose-Resposta a Droga , Eritrócitos/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Gossipol/metabolismo , Células HL-60 , Humanos , Cinética , Modelos Biológicos , Niacinamida/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Espectrometria de Fluorescência , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA