Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 172020, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547987

RESUMO

Climate change has disproportional effects on Arctic-boreal ecosystems, as the increase of air temperatures in these northern regions is several times higher than the global average. Ongoing warming and drying have resulted in recent record-breaking fire years in Arctic-boreal ecosystems, resulting in substantial carbon emissions that might accelerate climate change. While recent trends in Arctic-boreal burned area have been well documented, it is still unclear how fire intensity has changed. Fire intensity relates to the energy release from combustion and to a large extent drives the impact of a fire on the vegetation and soils, the emission of various gasses and the combustion completeness of different fuels. Here, we used the active fire product from the Moderate Resolution Imaging Spectroradiometer (MODIS) to examine trends in fire radiative power (FRP) over the entire Arctic-boreal region. We found a significant increase in annual median fire intensity between 2003 and 2022 in Eurasian boreal forests, for both daytime (increase of 0.392 MW/km2 per year, R2 = 0.56, p < 0.001) and nighttime fires (increase of 0.175 MW/km2 per year, R2 = 0.47, p < 0.001), while no general trend in FRP was observed in boreal North America. This increase in FRP in Eurasian boreal forests was strongly associated with simultaneous increases in air temperature, vapour pressure deficit, fire weather and fuel availability. We estimated that for Eurasia with each degree increase in air temperature, annual median daytime FRP increases with 1.58 MW/km2 in the tundra and 0.94 MW/km2 in the taiga. Climate change has thus resulted in a widespread and clear increase in fire intensity in central and eastern Eurasia while we could not discern clear trends in Arctic-boreal North America. Arctic-boreal fire intensity may further increase with climate change, with potentially major consequences for fire regimes, carbon emissions and society.

2.
Nat Commun ; 14(1): 6829, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884516

RESUMO

In most of the world, conditions conducive to wildfires are becoming more prevalent. Net carbon emissions from wildfires contribute to a positive climate feedback that needs to be monitored, quantified, and predicted. Here we use a causal inference approach to evaluate the influence of top-down weather and bottom-up fuel precursors on wildfires. The top-down dominance on wildfires is more widespread than bottom-up dominance, accounting for 73.3% and 26.7% of regions, respectively. The top-down precursors dominate in the tropical rainforests, mid-latitudes, and eastern Siberian boreal forests. The bottom-up precursors dominate in North American and European boreal forests, and African and Australian savannahs. Our study identifies areas where wildfires are governed by fuel conditions and hence where fuel management practices may be more effective. Moreover, our study also highlights that top-down and bottom-up precursors show complementary wildfire predictability across timescales. Seasonal or interannual predictions are feasible in regions where bottom-up precursors dominate.

3.
Science ; 378(6623): 1005-1009, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454839

RESUMO

The summers of 2019, 2020, and 2021 experienced unprecedented fire activity in northeastern Siberia, driven by record high spring and summer temperatures. Many of these fires burned in permafrost peatlands within the Arctic Circle. We show that early snowmelt together with an anomalous Arctic front jet over northeastern Siberia promoted unusually warm and dry surface conditions, followed by anomalously high lightning and fire activity. Since 1966, spring snowmelt has started 1.7 days earlier each decade. Moreover, Arctic front jet occurrences in summer have more than tripled in frequency over the last 40 years. These interconnected climatological drivers promote extreme fire activity in eastern Siberia, including a northward shift of fires, which may accelerate the degradation of carbon-rich permafrost peatlands.


Assuntos
Clima , Incêndios Florestais , Raio , Estações do Ano , Temperatura
5.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34697246

RESUMO

Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.


Assuntos
Mudança Climática , Picea , Taiga , Incêndios Florestais , América do Norte
6.
Nature ; 593(7859): 399-404, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34012083

RESUMO

Forest fires are usually viewed within the context of a single fire season, in which weather conditions and fuel supply can combine to create conditions favourable for fire ignition-usually by lightning or human activity-and spread1-3. But some fires exhibit 'overwintering' behaviour, in which they smoulder through the non-fire season and flare up in the subsequent spring4,5. In boreal (northern) forests, deep organic soils favourable for smouldering6, along with accelerated climate warming7, may present unusually favourable conditions for overwintering. However, the extent of overwintering in boreal forests and the underlying factors influencing this behaviour remain unclear. Here we show that overwintering fires in boreal forests are associated with hot summers generating large fire years and deep burning into organic soils, conditions that have become more frequent in our study areas in recent decades. Our results are based on an algorithm with which we detect overwintering fires in Alaska, USA, and the Northwest Territories, Canada, using field and remote sensing datasets. Between 2002 and 2018, overwintering fires were responsible for 0.8 per cent of the total burned area; however, in one year this amounted to 38 per cent. The spatiotemporal predictability of overwintering fires could be used by fire management agencies to facilitate early detection, which may result in reduced carbon emissions and firefighting costs.


Assuntos
Estações do Ano , Taiga , Incêndios Florestais/estatística & dados numéricos , Alaska , Algoritmos , Mudança Climática , Atividades Humanas , Raio , Territórios do Noroeste , Imagens de Satélites , Análise Espaço-Temporal , Fatores de Tempo , Incêndios Florestais/economia , Incêndios Florestais/prevenção & controle
7.
Glob Chang Biol ; 26(11): 6062-6079, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32529727

RESUMO

Boreal wildfires are increasing in intensity, extent, and frequency, potentially intensifying carbon emissions and transitioning the region from a globally significant carbon sink to a source. The productive southern boreal forests of central Canada already experience relatively high frequencies of fire, and as such may serve as an analog of future carbon dynamics for more northern forests. Fire-carbon dynamics in southern boreal systems are relatively understudied, with limited investigation into the drivers of pre-fire carbon stocks or subsequent combustion. As part of NASA's Arctic-Boreal Vulnerability Experiment, we sampled 79 stands (47 burned, 32 unburned) throughout central Saskatchewan to characterize above- and belowground carbon stocks and combustion rates in relation to historical land use, vegetation characteristics, and geophysical attributes. We found southern boreal forests emitted an average of 3.3 ± 1.1 kg C/m2 from field sites. The emissions from southern boreal stands varied as a function of stand age, fire weather conditions, ecozone, and soil moisture class. Sites affected by historical timber harvesting had greater combustion rates due to faster carbon stock recovery rates than sites recovering from wildfire events, indicating that different boreal forest land use practices can generate divergent carbon legacy effects. We estimate the 2015 fire season in Saskatchewan emitted a total of 36.3 ± 15.0 Tg C, emphasizing the importance of southern boreal fires for regional carbon budgets. Using the southern boreal as an analog, the northern boreal may undergo fundamental shifts in forest structure and carbon dynamics, becoming dominated by stands <70 years old that hold 2-7 kg C/m2 less than current mature northern boreal stands. Our latitudinal approach reinforces previous studies showing that northern boreal stands are at a high risk of holding less carbon under changing disturbance conditions.


Assuntos
Incêndios , Incêndios Florestais , Regiões Árticas , Carbono/análise , Florestas , Saskatchewan , Taiga
8.
Glob Chang Biol ; 26(3): 1592-1607, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31658411

RESUMO

Fire is a primary disturbance in boreal forests and generates both positive and negative climate forcings. The influence of fire on surface albedo is a predominantly negative forcing in boreal forests, and one of the strongest overall, due to increased snow exposure in the winter and spring months. Albedo forcings are spatially and temporally heterogeneous and depend on a variety of factors related to soils, topography, climate, land cover/vegetation type, successional dynamics, time since fire, season, and fire severity. However, how these variables interact to influence albedo is not well understood, and quantifying these relationships and predicting postfire albedo becomes increasingly important as the climate changes and management frameworks evolve to consider climate impacts. Here we developed a MODIS-derived 'blue sky' albedo product and a novel machine learning modeling framework to predict fire-driven changes in albedo under historical and future climate scenarios across boreal North America. Converted to radiative forcing (RF), we estimated that fires generate an annual mean cooling of -1.77 ± 1.35 W/m2 from albedo under historical climate conditions (1971-2000) integrated over 70 years postfire. Increasing postfire albedo along a south-north climatic gradient was offset by a nearly opposite gradient in solar insolation, such that large-scale spatial patterns in RF were minimal. Our models suggest that climate change will lead to decreases in mean annual postfire albedo, and hence a decreasing strength of the negative RF, a trend dominated by decreased snow cover in spring months. Considering the range of future climate scenarios and model uncertainties, we estimate that for fires burning in the current era (2016) the cooling effect from long-term postfire albedo will be reduced by 15%-28% due to climate change.


Assuntos
Mudança Climática , Incêndios , América do Norte , Taiga , Árvores
9.
Proc Natl Acad Sci U S A ; 114(21): 5361-5366, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484001

RESUMO

High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO2) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO2 fluxes across Alaska during 2012-2014. We find that tundra ecosystems were a net source of CO2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate.

10.
Ecology ; 97(11): 3244, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27870045

RESUMO

Megafires have lasting social, ecological, and economic impacts and are increasing in the western contiguous United States. Because of their infrequent nature, there is a limited sample of megafires to investigate their unique behavior, drivers, and relationship to forest management practices. One approach is to characterize critical information pre-, during, and post-fire using remote sensing. In August 2013, the Rim Fire burned 104,131 ha and in September 2014, the King Fire burned 39,545 ha. Both fires occurred in California's Sierra Nevada. The areas burned by these fires were fortuitously surveyed by airborne campaigns, which provided the most recent remote sensing technologies not currently available from satellite. Technologies include an imaging spectrometer spanning the visible to shortwave infrared (0.38-2.5 µm), a multispectral, high-spatial resolution thermal infrared (3.5-13 µm) spectroradiometer, and Light Detection and Ranging that provide spatial resolutions of pixels from 1 × 1 m to 35 × 35 m. Because of the unique information inherently derived from these technologies before the fires, the areas were subsequently surveyed after the fires. We processed and provide free dissemination of these airborne datasets as products of surface reflectance, spectral metrics and forest structural metrics ( http://dx.doi.org/10.3334/ORNLDAAC/1288). These data products provide a unique opportunity to study relationships among and between remote sensing observations and fuel and fire characteristics (e.g., fuel type, condition, structure, and fire severity). The novelty of these data is not only in the unprecedented types of information available from them before, during, and after two megafires, but also in the synergistic use of multiple state of the art technologies for characterizing the environment. The synergy of these data can provide novel information that can improve maps of fuel type, structure, abundance, and condition that may improve predictions of megafire behavior and effects, thus aiding management before, during, and after such events. Key questions that these data could address include: What drives, extinguishes, and results from megafires? How does megafire behavior relate to fire and fuel management? How does the size and severity of a megafire affect the ecological recovery of the system?


Assuntos
Incêndios , Imagens de Satélites , California , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA