Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(12): 231029, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094272

RESUMO

Fluid flow processes such as drainage and evaporation in porous media are crucial in geological and biological systems. The motion of the displacement front of a moving fluid through multi-phase interfaces is often associated with abrupt mechanical energy release, detectable as acoustic emissions (AEs). The exact origin of these pulses and their damping mechanisms are still subjects of debate. Here, we study the characteristics of such AEs during evaporation of water from artificial microfluidic vessels, inspired by the physiology of vascular water-transport in plants. From the extracted settling times of the recorded AEs, we identify three pulse types and attribute their origins to bubble formation, snap-off events and rapid pore invasion. We also show that the resonance frequencies between 10 and 70 kHz present in specific pulse types decrease with increasing vessel radius (ranging from 0.25 to 1.0 mm) and length (ranging from 2.5 to 10.0 mm). Our findings provide insight into evaporation-induced AEs from microfluidic systems, and their potential use in non-invasive inspection or vascular health monitoring.

2.
Rev Sci Instrum ; 90(8): 084706, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472650

RESUMO

We developed an impedance bridge that operates at cryogenic temperatures (down to 60 mK) and in perpendicular magnetic fields up to at least 12 T. This is achieved by mounting a GaAs HEMT amplifier perpendicular to a printed circuit board containing the device under test and thereby parallel to the magnetic field. The measured amplitude and phase of the output signal allows for the separation of the total impedance into an absolute capacitance and a resistance. Through a detailed noise characterization, we find that the best resolution is obtained when operating the HEMT amplifier at the highest gain. We obtained a resolution in the absolute capacitance of 6.4 aF/Hz at 77 K on a comb-drive actuator while maintaining a small excitation amplitude of 15 kBT/e. We show the magnetic field functionality of our impedance bridge by measuring the quantum Hall plateaus of a top-gated hBN/graphene/hBN heterostructure at 60 mK with a probe signal of 12.8 kBT/e.

3.
Nanotechnology ; 29(37): 375301, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-29924743

RESUMO

We report on the fabrication and characterization of an optimized comb-drive actuator design for strain-dependent transport measurements on suspended graphene. We fabricate devices from highly p-doped silicon using deep reactive ion etching with a chromium mask. Crucially, we implement a gold layer to reduce the device resistance from ≈51.6 kΩ to ≈236 Ω at room temperature in order to allow for strain-dependent transport measurements. The graphene is integrated by mechanically transferring it directly onto the actuator using a polymethylmethacrylate membrane. Importantly, the integrated graphene can be nanostructured afterwards to optimize device functionality. The minimum feature size of the structured suspended graphene is 30 nm, which allows for interesting device concepts such as mechanically-tunable nanoconstrictions. Finally, we characterize the fabricated devices by measuring the Raman spectrum as well as the a mechanical resonance frequency of an integrated graphene sheet for different strain values.

4.
Nanotechnology ; 28(8): 085704, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-27976629

RESUMO

The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging.

5.
Ultramicroscopy ; 171: 70-76, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27615394

RESUMO

To make the forces in an Atomic Force Microscope that operates in a dynamic mode with one or multiple vibrations applied to the cantilever, quantitative, one needs to relate a change in resonance frequency of the cantilever to a specific tip-sample interaction. Due to the time dependence of the force between the tip and sample caused by the vibrations, this task is not only difficult, but in fact only possible to solve for certain limiting cases, if one follows common theoretical approaches with a Taylor expansion around the deflection point. Here, we present an analytical method for calculating the resonance frequencies of the cantilever that is valid for any tip-sample interaction. Instead of linearizing the tip-sample interaction locally, we calculate an averaged, weighted linearization taking into account all positions of the tip while vibrating. Our method bridges, therefore, the difficult gap between a free oscillating cantilever and a cantilever that is pushed infinitely hard into contact with a surface, which describes a clamped-pinned boundary condition. For a correct description of the cantilever dynamics, we take into account both the tip mass and the tip moment of inertia. Applying our model, we show that it is possible to calculate the modal response of a cantilever as a function of the tip-sample interaction strength. Based on these modal vibration characteristics, we show that the higher resonance frequencies of a cantilever are completely insensitive to the strength of the tip-sample interaction.

6.
Rev Sci Instrum ; 86(3): 033704, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25832235

RESUMO

The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

7.
Nat Commun ; 6: 6444, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25753109

RESUMO

Heterodyne detection schemes are widely used to detect and analyse high-frequency signals, which are unmeasurable with conventional techniques. It is the general conception that the heterodyne signal is generated only by mixing and that beating can be fully neglected, as it is a linear effect that, therefore, cannot produce a heterodyne signal. Deriving a general analytical theory, we show, in contrast, that both beating and mixing are crucial to explain the heterodyne signal generation. Beating even dominates the heterodyne signal, if the nonlinearity of the mixing element (mixer) is of higher order than quadratic. The specific characteristic of the mixer determines its sensitivity for beating. We confirm our results with both a full numerical simulation and an experiment using heterodyne force microscopy, which represents a model system with a highly non-quadratic mixer. As quadratic mixers are the exception, many results of previously reported heterodyne measurements may need to be reconsidered.

8.
Ultramicroscopy ; 135: 113-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23995285

RESUMO

Experiments in Heterodyne Force Microscopy (HFM) show the possibility to image deeply buried nanoparticles below a surface. However, the contrast mechanism and the motion of the cantilever, which detects the subsurface signal, are not yet understood. We present a numerical study of the cantilever motion in different HFM modes using realistic tip-sample interactions. The results provide information on the sensitivity to the heterodyne signal. The parameters in our calculations are chosen as closely as possible to the situation in real experiments to enable (future) comparisons based on our predictions. In HFM both the tip and the sample are excited at slightly different ultrasonic frequencies such that a difference frequency is generated that can contain subsurface information. We calculate the amplitude and phase of the difference frequency generated by the motion of the cantilever. The amplitude shows a local maximum in the attractive Van-der-Waals regime and an even higher plateau in the repulsive regime. The phase shifts 180° or 90°, depending on the mode of operation. Finally, we observe oscillations in both the amplitude and the phase of the difference frequency, which are caused by a shift of the resonance frequency of the cantilever and an involved transient behavior.

9.
Nanotechnology ; 24(36): 365701, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23942333

RESUMO

Applying heterodyne force microscopy (HFM), it has been impressively demonstrated that it is possible to obtain subsurface information: 20 nm large gold nanoparticles that were buried 500 nm deep have been imaged. It is the heterodyne signal that contains the subsurface information. We elucidate, both theoretically and experimentally, the sensitivity to the heterodyne signal as a function of the tip-sample distance. This is crucial information for experiments as the distance, and therefore the sensitivity, is tunable. We show that the amplitude of the heterodyne signal has a local maximum in the attractive part of the tip-sample interaction, before it surprisingly reaches an even higher plateau, when the tip-sample interaction is repulsive. This can only be explained by a non-decreasing amplitude of the ultrasonic motion of the tip, although it is in full contact with the surface. We confirm this counterintuitive tip behavior experimentally even on a hard surface like silicon.

10.
Nanotechnology ; 23(14): 145704, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22434065

RESUMO

Recent experiments in the field of subsurface atomic force microscopy have demonstrated that it is possible to nondestructively image micro- and even nanoparticles that are embedded significantly deep within the bulk of a sample. In order to get insights into the contrast formation mechanism, we performed a finite element analysis and an analytical study, in which we calculated the amplitude and phase variation on the surface of an ultrasound wave that has traveled through the sample. Our calculations were performed as closely as possible to the situation in the experiments to enable a (future) comparison based on our predictions. We show that Rayleigh scattering of acoustic waves accounts for the measured contrast and we verify the characteristic Rayleigh dependences. The numerical results show that the contrast is independent of the depth at which a particle is buried, whereas the analytical study reveals a 1/depth dependence. In addition, we find a large deviation in the width of the particle in the contrast at the surface when applying the numerical or the analytical calculation respectively. These results indicate the importance of both the reflections of sound waves at the sample interfaces and bulk damping, as both are treated differently in our two models.


Assuntos
Microscopia de Força Atômica/métodos , Nanopartículas/análise , Algoritmos , Simulação por Computador , Análise de Elementos Finitos , Modelos Teóricos , Som
11.
Phys Rev Lett ; 105(2): 021601, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20867697

RESUMO

We report the first observation of multiple intercommutation (more than two successive reconnections) of Abelian Higgs cosmic strings at ultrahigh collision speeds, and the formation of "kink trains" with up to four closely spaced left- or right-moving kinks, in the deep type-II regime 16 ≤ ß ≤ 64 (where ß=m(scalar)2/m(gauge)2). The minimum critical speed for double reconnection goes down from ∼0.98c at ß = 1 to ∼0.86c for ß = 64. The process leading to the second intercommutation changes with ß: it involves an expanding loop if ß ≥ 16, but only a radiation blob if 1 < ß ≤ 8. Triple reconnections are generic in the loop-mediated regime for collision parameters on the boundary between single and double reconnection. For ß = 16 we observe quadruple events. We comment on the effect of strongly repulsive core interactions on the small scale structure on the strings and their gravitational wave emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA