Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 243(0): 296-306, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37157953

RESUMO

Electrochemical and catalytic conversion to and from ammonia is strongly enhanced by appropriate choice of hydrogen conducting electrolyte or substrate. Here we explore both protonic and hydride ionic conductors in relation to ammonia conversions. Protonic conductors tend to require too high a temperature to achieve sufficient hydrogen flux for ammonia synthesis as thermal decomposition competes strongly. Conversely protonic conductors are well suited to direct ammonia fuel cell use. Hydride ions can be very mobile and are strongly reducing. Alkaline hydride lattices can exhibit facile H and N mobility and exchange and offer a very promising basis for ammonia conversion and synthesis.

2.
Chemistry ; 27(51): 13029-13039, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34213033

RESUMO

The flexibility of the zeolite Rho framework offers great potential for tunable molecular sieving. The fully copper-exchanged form of Rho and mixed Cu,H- and Cu,Na-forms have been prepared. EPR spectroscopy reveals that Cu2+ ions are present in the dehydrated forms and Rietveld refinement shows these prefer S6R sites, away from the d8r windows that control diffusion. Fully exchanged Cu-Rho remains in an open form upon dehydration, the d8r windows remain nearly circular and the occupancy of window sites is low, so that it adsorbs CO2 rapidly at room temperature. Breakthrough tests with 10 % CO2 /40 % CH4 mixtures show that Cu4.9 -Rho is able to produce pure methane, albeit with a relatively low capacity at this pCO2 due to the weak interaction of CO2 with Cu cations. This is in strong contrast to Na-Rho, where cations in narrow elliptical window sites enable CO2 to be adsorbed with high selectivity and uptake but too slowly to enable the production of pure methane in similar breakthrough experiments. A series of Cu,Na-Rho materials was prepared to improve uptake and selectivity compared to Cu-Rho, and kinetics compared to Na-Rho. Remarkably, Cu,Na-Rho with >2 Cu cations per unit cell exhibited exsolution, due to the preference of Na cations for narrow S8R sites in distorted Rho and of Cu cations for S6R sites in the centric, open form of Rho. The exsolved Cu,Na-Rho showed improved performance in CO2 /CH4 breakthrough tests, producing pure CH4 with improved uptake and CO2 /CH4 selectivity compared to that of Cu4.9 -Rho.

3.
J Am Chem Soc ; 141(32): 12744-12759, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31373800

RESUMO

Zeolites with flexible structures that adapt to coordinate extraframework cations when dehydrated show a rich variety of gas adsorption behavior and can be tuned to optimize kinetics and selectivity. Merlinoite zeolite (topology type MER) with Si/Al = 3.8 has been prepared in Na, K, and Cs forms and its structural response to dehydration measured: the unit cell volumes decrease by 9.8%, 7.7%, and 7.1% for Na-, K-, and Cs-MER, respectively. Na-MER adopts Immm symmetry, while K- and Cs-MER display P42/nmc symmetry, the difference attributed to the preferred locations of the smaller and larger cations. Their performance in CO2 adsorption has been measured by single-component isotherms and by mixed gas (CO2/CH4/He) breakthrough experiments. The differing behavior of the cation forms can be related to structural changes during CO2 uptake measured by variable-pressure PXRD. All show a "breathing" transition from narrow to wide pore forms. Na- and Cs-MER show non-Type I isotherms and kinetically-limited CO2 adsorption and delivery of pure CH4 in CO2/CH4 separation. However, K-MER shows good uptake of CO2 (3.5 mmol g-1 at 1 bar and 298 K), rapid adsorption and desorption kinetics, and promising CO2/CH4 separation. Furthermore, the narrow-to-wide pore transition occurs rapidly and at very low pCO2 via a "triggered" opening. This has the consequence that whereas no CH4 is adsorbed from a pure stream, addition of low levels of CO2 can result in pore opening and uptake of both CO2 and CH4, although in a continuous stream the CH4 is replaced selectively by CO2. This observed cation size-dependent adsorption behavior derives from a fine energetic balance between different framework configurations in these cation-controlled molecular sieves.


Assuntos
Dióxido de Carbono/química , Zeolitas/química , Adsorção , Metano/química , Porosidade , Zeolitas/síntese química
4.
Nat Mater ; 14(1): 95-100, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25485988

RESUMO

With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

5.
J Phys Condens Matter ; 23(23): 234111, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21613698

RESUMO

The proton conducting material Ba(3)Ca(1.18)Ta(1.82)O(8.73) (BCT18) was synthesized and characterized using diffraction methods and thermal analysis. It was shown that BCT18 is structurally similar to its niobium analogue (BCN18). At synthesis temperatures up to 1500 °C however, BCT18 forms a mixture of Ca- and Ta-site ordered phases, with both 1:1 type and 1:2 type ordering. The phase ratio seems to depend solely on the synthesis conditions, with 1:1 type ordering being the dominant form in most cases. Thermal treatment in vacuum, wet and dry hydrogen, and CO(2) suggests that both forms contain defects (Ca(Ta)(''') and V(O)(··)), allowing the material to absorb water and CO(2). The uptake and the release of H(2)O and of CO(2) are all reversible, as evidenced by x-ray diffraction studies and thermal analysis, suggesting that the molecules are present as structural defects (OH(O)(·) and CO(3O)(×)), rather than surface species or separate hydroxide or carbonate phases. Solid state (1)H nuclear magnetic resonance also confirms the presence of protons, and the peak broadening suggests that they are mobile at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA