Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(11): e1009478, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748532

RESUMO

Cortical pyramidal cells (PCs) have a specialized dendritic mechanism for the generation of bursts, suggesting that these events play a special role in cortical information processing. In vivo, bursts occur at a low, but consistent rate. Theory suggests that this network state increases the amount of information they convey. However, because burst activity relies on a threshold mechanism, it is rather sensitive to dendritic input levels. In spiking network models, network states in which bursts occur rarely are therefore typically not robust, but require fine-tuning. Here, we show that this issue can be solved by a homeostatic inhibitory plasticity rule in dendrite-targeting interneurons that is consistent with experimental data. The suggested learning rule can be combined with other forms of inhibitory plasticity to self-organize a network state in which both spikes and bursts occur asynchronously and irregularly at low rate. Finally, we show that this network state creates the network conditions for a recently suggested multiplexed code and thereby indeed increases the amount of information encoded in bursts.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Animais , Biologia Computacional , Simulação por Computador , Dendritos/fisiologia , Homeostase , Interneurônios/fisiologia , Rede Nervosa/citologia , Plasticidade Neuronal/fisiologia , Ratos
2.
J Biol Chem ; 289(32): 21856-76, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24936070

RESUMO

Over the last two decades, the identification of missense mutations in the α-synuclein (α-Syn) gene SNCA in families with inherited Parkinson disease (PD) has reinforced the central role of α-Syn in PD pathogenesis. Recently, a new missense mutation (H50Q) in α-Syn was described in patients with a familial form of PD and dementia. Here we investigated the effects of this novel mutation on the biophysical properties of α-Syn and the consequences for its cellular function. We found that the H50Q mutation affected neither the structure of free or membrane-bound α-Syn monomer, its interaction with metals, nor its capacity to be phosphorylated in vitro. However, compared with the wild-type (WT) protein, the H50Q mutation accelerated α-Syn fibrillization in vitro. In cell-based models, H50Q mutation did not affect α-Syn subcellular localization or its ability to be phosphorylated by PLK2 and GRK6. Interestingly, H50Q increased α-Syn secretion from SHSY5Y cells into culture medium and induced more mitochondrial fragmentation in hippocampal neurons. Although the transient overexpression of WT or H50Q did not induce toxicity, both species induced significant cell death when added to the culture medium of hippocampal neurons. Strikingly, H50Q exhibited more toxicity, suggesting that the H50Q-related enhancement of α-Syn aggregation and secretion may play a role in the extracellular toxicity of this mutant. Together, our results provide novel insight into the mechanism by which this newly described PD-associated mutation may contribute to the pathogenesis of PD and related disorders.


Assuntos
Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , alfa-Sinucleína/química , alfa-Sinucleína/genética , Animais , Morte Celular/genética , Morte Celular/fisiologia , Linhagem Celular , Células Cultivadas , Humanos , Metabolismo dos Lipídeos , Metais/metabolismo , Camundongos , Proteínas Mutantes/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Fosforilação , Agregados Proteicos/genética , Agregação Patológica de Proteínas/genética , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/fisiologia
3.
J Am Chem Soc ; 134(11): 5196-210, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22339654

RESUMO

Despite increasing evidence that supports the role of different post-translational modifications (PTMs) in modulating α-synuclein (α-syn) aggregation and toxicity, relatively little is known about the functional consequences of each modification and whether or not these modifications are regulated by each other. This lack of knowledge arises primarily from the current lack of tools and methodologies for the site-specific introduction of PTMs in α-syn. More specifically, the kinases that mediate selective and efficient phosphorylation of C-terminal tyrosine residues of α-syn remain to be identified. Unlike phospho-serine and phospho-threonine residues, which in some cases can be mimicked by serine/threonine → glutamate or aspartate substitutions, there are no natural amino acids that can mimic phospho-tyrosine. To address these challenges, we developed a general and efficient semisynthetic strategy that enables the site-specific introduction of single or multiple PTMs and the preparation of homogeneously C-terminal modified forms of α-syn in milligram quantities. These advances have allowed us to investigate, for the first time, the effects of selective phosphorylation at Y125 on the structure, aggregation, membrane binding, and subcellular localization of α-syn. The development of semisynthetic methods for the site-specific introduction of single or PTMs represents an important advance toward determining the roles of such modifications in α-syn structure, aggregation, and functions in heath and disease.


Assuntos
Tirosina/metabolismo , alfa-Sinucleína/biossíntese , Sequência de Aminoácidos , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência , Tirosina/química , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
4.
Appl Environ Microbiol ; 74(5): 1469-77, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18192423

RESUMO

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a carcinogenic heterocyclic aromatic amine formed in meat products during cooking. Although the formation of hazardous PhIP metabolites by mammalian enzymes has been extensively reported, research on the putative involvement of the human intestinal microbiota in PhIP metabolism remains scarce. In this study, the in vitro conversion of PhIP into its microbial derivate, 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3',2':4,5]imidazo[1,2-a]pyrimidin-5-ium chloride (PhIP-M1), by fecal samples from 18 human volunteers was investigated. High-performance liquid chromatography analysis showed that all human fecal samples transformed PhIP but with efficiencies ranging from 1.8 to 96% after 72 h of incubation. Two PhIP-transforming strains, PhIP-M1-a and PhIP-M1-b, were isolated from human feces and identified by fluorescent amplified fragment length polymorphism and pheS sequence analyses as Enterococcus faecium strains. Some strains from culture collections belonging to the species E. durans, E. avium, E. faecium, and Lactobacillus reuteri were also able to perform this transformation. Yeast extract, special peptone, and meat extract supported PhIP transformation by the enriched E. faecium strains, while tryptone, monomeric sugars, starch, and cellulose did not. Glycerol was identified as a fecal matrix constituent required for PhIP transformation. Abiotic synthesis of PhIP-M1 and quantification of the glycerol metabolite 3-hydroxypropionaldehyde (3-HPA) confirmed that the anaerobic fermentation of glycerol via 3-HPA is the critical bacterial transformation process responsible for the formation of PhIP-M1. Whether it is a detoxification is still a matter of debate, since PhIP-M1 has been shown to be cytotoxic toward Caco-2 cells but is not mutagenic in the Ames assay.


Assuntos
Carcinógenos/metabolismo , Enterococcus faecium/metabolismo , Imidazóis/metabolismo , Intestinos/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Enterococcus faecium/genética , Fezes/microbiologia , Fermentação , Glicerol , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA