Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech ; 98: 109429, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31662198

RESUMO

An accurate gait characterization is fundamental for diagnosis and treatment in both clinical and sportive fields. Although several devices allow such measurements, the performance comparison between the acquired signals may be a challenging task. A novel pipeline for the accurate non-rigid alignment of gait signals is proposed. In this paper, the measurements of Inertial Measurement Units (IMU) and Optical Motion Capture Systems (OMCAP) are aligned using a modified version of the Dynamic Time Warping (DTW) algorithm. The differences between the two acquisitions are evaluated using both global (RMSE, Correlation Coefficient (CC)) and local (Statistical Parametric Mapping (SPM)) metrics. The method is applied to a data-set obtained measuring the gait of ten healthy subjects walking on a treadmill at three different gait paces. Results show a global bias between the signal acquisition of 0.05°. Regarding the global metrics, a mean RMSE value of 2.65° (0.73°) and an average CC value of 0.99 (0.01) were obtained. The SPM profile shows, in each gait cycle phase, the percentage of cases when two curves are statistically identical and reaches an average of 48% (22%).


Assuntos
Análise da Marcha/instrumentação , Fenômenos Mecânicos , Dispositivos Ópticos , Adulto , Algoritmos , Fenômenos Biomecânicos , Humanos
2.
Magn Reson Med Sci ; 19(3): 216-226, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31611542

RESUMO

PURPOSE: Intravoxel incoherent motion (IVIM) analysis has attracted the interest of the clinical community due to its close relationship with microperfusion. Nevertheless, there is no clear reference protocol for its implementation; one of the questions being which b-value distribution to use. This study aimed to stress the importance of the sampling scheme and to show that an optimized b-value distribution decreases the variance associated with IVIM parameters in the brain with respect to a regular distribution in healthy volunteers. METHODS: Ten volunteers were included in this study; images were acquired on a 1.5T MR scanner. Two distributions of 16 b-values were used: one considered 'regular' due to its close association with that used in other studies, and the other considered 'optimized' according to previous studies. IVIM parameters were adjusted according to the bi-exponential model, using two-step method. Analysis was undertaken in ROI defined using in the Automated Anatomical Labeling atlas, and parameters distributions were compared in a total of 832 ROI. RESULTS: Maps with fewer speckles were obtained with the 'optimized' distribution. Coefficients of variation did not change significantly for the estimation of the diffusion coefficient D but decreased by approximately 39% for the pseudo-diffusion coefficient estimation and by 21% for the perfusion fraction. Distributions of adjusted parameters were found significantly different in 50% of the cases for the perfusion fraction, in 80% of the cases for the pseudo-diffusion coefficient and 17% of the cases for the diffusion coefficient. Observations across brain areas show that the range of average values for IVIM parameters is smaller in the 'optimized' case. CONCLUSION: Using an optimized distribution, data are sampled in a way that the IVIM signal decay is better described and less variance is obtained in the fitted parameters. The increased precision gained could help to detect small variations in IVIM parameters.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Movimento/fisiologia
3.
Sensors (Basel) ; 19(23)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805699

RESUMO

This study aims to compare a new inertial measurement unit based system with the highly accurate but complex laboratory gold standard, an optoelectronic motion capture system. Inertial measurement units are sensors based on accelerometers, gyroscopes, and/or magnetometers. Ten healthy subjects were recorded while performing flexion-extension and radial-ulnar deviation movements of their right wrist using inertial sensors and skin markers. Maximum range of motion during these trials and mean absolute difference between the systems were calculated. A difference of 10° ± 5° for flexion-extension and 2° ± 1° for radial-ulnar deviation was found between the two systems with absolute range of motion values of 126° and 50° in the respective axes. A Wilcoxon rank sum test resulted in a no statistical differences between the systems with p-values of 0.24 and 0.62. The observed results are even more precise than reports from previous studies, where differences between 14° and 27° for flexion-extension and differences between 6° and 17° for radial-ulnar deviation were found. Effortless and fast applicability, good precision, and low inter-observer variability make inertial measurement unit based systems applicable to clinical settings.


Assuntos
Técnicas Biossensoriais , Articulação do Punho/fisiologia , Humanos , Amplitude de Movimento Articular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA