Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 14(1): 2200, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273000

RESUMO

The global production of soybean, among other drought-susceptible crops, is reportedly affected by drought periods, putting more pressure on food production worldwide. Drought alters plants' morphology, physiology and biochemistry. As a response to drought, reactive oxygen species (ROS) concentrations are elevated, causing cellular damage. However, lower concentrations of ROS were reported to have an alleviating role through up-regulating various defensive mechanisms on different levels in drought-stressed plants. This experiment was set up in a controlled environment to monitor the effects of exogenous spray of different (0, 1, 5 and 10 mM) concentrations of H2O2 on two soybean genotypes, i.e., Speeda (drought-tolerant), and Coraline (drought-susceptible) under severe drought stress conditions (induced by polyethylene glycol) during flowering stage. Furthermore, each treatment was further divided into two groups, the first group was kept under drought, whereas drought was terminated in the second group at the end of the flowering stage, and the plants were allowed to recover. After 3 days of application, drought stress significantly decreased chlorophyll-a and chlorophyll-b, total carotenoids, stomatal conductance, both optimal and actual photochemical efficiency of PSII (Fv/Fm and Df/Fm, respectively), relative water content, specific leaf area, shoot length and dry weight, and pod number and fresh weight, but significantly increased the leaf concentration of both proline and total soluble sugars, the root length, volume and dry weight of both genotypes. The foliar application of 1 mM and 5 mM H2O2 on Speeda and Coraline, respectively enhanced most of the decreased traits measurably, whereas the 10 mM concentration did not. The group of treatments where drought was maintained after flowering failed to produce pods, regardless of H2O2 application and concentration, and gradually deteriorated and died 16 and 19 days after drought application on Coraline and Speeda, respectively. Overall, Speeda showed better performance under drought conditions. Low concentrations of foliar H2O2 could help the experimented soybean genotypes better overcome the influence of severe drought during even sensitive stages, such as flowering. Furthermore, our findings suggest that chlorophyll fluorescence and the cellular content of proline and soluble sugars in the leaves can provide clear information on the influence of both drought imposition and H2O2 application on soybean plants.


Assuntos
Glycine max , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Secas , Clorofila , Prolina , Açúcares
2.
Plants (Basel) ; 9(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471090

RESUMO

Efficient nitrogen (N) nutrition has been reported to have the potential to alleviate the drought stress damages by maintaining metabolic activities even at low tissue water potential. The goal of our research was to find a correlation on the genotype level between the effect of different amounts of nitrogen nutrition and water supply at different growth stages. A small-plot experiment was established with three maize hybrids and three levels of nitrogen, and two different amounts of water supply were applied during the vegetation period of 2018 and 2019. Chlorophyll fluorescence parameters were detected, as well as potential and actual photochemical efficiency of PSII, at three growth stages: eight-leaf stage, tasseling, silking. At physiological maturity, the yield of hybrids was also measured. While only genotype differences were described among the investigated parameters in the V8 stage, treatment effects were also realized based on the measured chlorophyll fluorescence parameters during the tasseling and silking stages. Beyond the significant effect of irrigation, a similar impact was declared in the case of 80 kg ha-1 N treatment at the later growth stages. Pronounced correlation was described between chlorophyll fluorescence parameters and yield mainly under irrigated conditions. Our result suggested that lower N nutrition may be sufficient mainly under irrigated conditions, and in vivo chlorophyll fluorescence parameters are appropriate for detecting the effect of environmental factors in different growth stages.

3.
Appl Radiat Isot ; 160: 109127, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32174463

RESUMO

Manganese is one of the most important essential micronutrients for the plants. To monitor its uptake and transport by radioactive tracking is a powerful method due to the no carrier added 52Mn in 10-12 moldm-3 concentration range. The generally used method is to measure the radioactivity of cut parts of plants by gamma-spectrometry. Only few studies reported about noninvasive measurement, using pairs of detectors connected in coincidence. We use a full ring MiniPET machine for this purpose to dynamically visualize the uptake and distribution of the radionuclide in 4D. The results are controlled with the conventional gamma spectroscopy after chopping the plants into six parts. The study of stress tolerance initiated by PEG 6000 in different hybrids of maize is also presented as possible application for the phenotyping of plants by PET camera.


Assuntos
Manganês/farmacocinética , Tomografia por Emissão de Pósitrons/instrumentação , Plântula , Zea mays/metabolismo , Secas , Radioisótopos/metabolismo , Espectrometria gama
4.
PLoS One ; 14(9): e0221767, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31490954

RESUMO

In modern agriculture, besides providing high and stable yields, it is imperative to produce products with a high nutritive quality. The goal of this study was to determine the effect of different fertilization regimes on the macro- and micronutrients in beetroot. A 3-year field trial was set up according to a Latin square method with four types of fertilization (unfertilized control, 50 t stable manure ha-1, and 500 and 1,000 kg NPK 5-20-30 ha-1). The mineral content was determined as follows (mg 100 g-1 in fresh weight of beetroot): 14-29 P, 189-354 K, 18-34 Ca, 17-44 Mg, 0.67-1.83 Fe, 0.41-0.65 Mn and 0.28-0.44 Zn. The highest beetroot P content was determined for the treatment with stable manure, especially in a year with dry climatic conditions. The highest beetroot K content was determined for the treatment with 1,000 kg NPK 5-20-30 ha-1, but at the same time for the same treatment, a general decreasing trend of micronutrient content was determined, due to the possible antagonistic effect of added potassium. For better mineral status of beetroot, application of combined mineral and organic fertilizers supplemented with additional foliar application of micronutrients can be suggested.


Assuntos
Beta vulgaris/efeitos dos fármacos , Beta vulgaris/metabolismo , Fertilizantes , Minerais/metabolismo , Agricultura Orgânica , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Clima , Minerais/química , Minerais/farmacologia , Estações do Ano , Solo/química
5.
J Agric Food Chem ; 67(24): 6884-6891, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31135156

RESUMO

Glucopyranosylidene-spiro-benzo[ b][1,4]oxazinones were obtained via the corresponding 2-nitrophenyl glycosides obtained by two methods: (a) AgOTf-promoted glycosylation of 2-nitrophenol derivatives by O-perbenzoylated methyl (α-d-gluculopyranosyl bromide)heptonate or (b) Mitsunobu-type reactions of O-perbenzoylated methyl (α-d-gluculopyranose)heptonate with bulky 2-nitrophenols in the presence of diethyl azodicarboxylate (DEAD) and PPh3. Catalytic hydrogenation (H2-Pd/C) or partial reduction (e.g., H2-Pd/C, pyridine) of the 2-nitro groups led to spiro-benzo[ b][1,4]oxazinones and spiro-benzo[ b][1,4]-4-hydroxyoxazinones by spontaneous ring closure of the intermediate 2-aminophenyl or 2-hydroxylamino glycosides, respectively. The analogous 2-aminophenyl thioglycosides, prepared by reactions of O-perbenzoylated methyl (α-d-gluculopyranosyl bromide)heptonate with 2-aminothiophenols, were cyclized in m-xylene at reflux temperature to the corresponding spiro-benzo[ b][1,4]thiazinones. O-Debenzoylation was effected by Zemplén transesterification in both series. Spiro-configurations were determined by NMR and electronic circular dichroism time-dependent density functional theory (ECD-TDDFT) methods. Inhibition assays with rabbit muscle glycogen phosphorylase b showed (1' R)-spiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]oxazin-3(4 H)-one} and (1' R)-spiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]thiazin-3(4 H)-one} to be the most efficient inhibitors (27 and 28% inhibition at 625 µM, respectively). Plant growth tests with white mustard and garden cress indicated no effect except for (1' R)-4-hydroxyspiro{1',5'-anhydro-d-glucitol-1',2-benzo[ b][1,4]oxazin-3(4 H)-one} with the latter plant to show modest inhibition of germination (95% relative to control).


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Lepidium sativum/efeitos dos fármacos , Mostardeira/efeitos dos fármacos , Compostos de Espiro/síntese química , Compostos de Espiro/farmacologia , Animais , Inibidores Enzimáticos/química , Esterificação , Germinação/efeitos dos fármacos , Glicogênio Fosforilase/química , Lepidium sativum/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Mostardeira/crescimento & desenvolvimento , Coelhos , Compostos de Espiro/química , Relação Estrutura-Atividade
6.
Front Plant Sci ; 10: 1747, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117336

RESUMO

Two submerged Elodea species have small differences in their ecophysiological responses when exposed to individual environmental factors. However, field observations showed that under eutrophic conditions with low light availability, Elodea canadensis could be displaced by Elodea nuttallii. Here we investigated the combined effect of environmental factors on the ecophysiological response of the two species in order to explain the differences in their invasion successes. We cultivated the plants in aquaria containing five different nitrogen (N) concentrations and incubated at five different light intensities. For both species increasing nitrogen concentrations resulted in increased relative growth rate, chlorophyll concentration, and actual photochemical efficiency of photosystem II (ΦPSII), however, they produced less roots. Lowering light intensity resulted in a lower relative growth rate, root production, and nutrient removal. In contrast, chlorophyll concentration in the leaves, and ΦPSII increased. The main difference between the two Elodea species was that the light compensation point (I c) and weight loss in the dark were significantly higher and photochemical efficiency and chlorophyll concentration were significantly lower for E. canadensis than for E. nuttallii, indicating that the latter can survive under much more shady and hypertrophic conditions. The change in nitrogen concentration of the media and in tissue concentration of the plants indicated that E. nuttallii has a higher nitrogen removal capacity. The ecophysiological differences between the two species can be an explanation for invasion success of E. nuttallii over E. canadensis and thus may explain why the latter is replaced by the first.

7.
Environ Sci Pollut Res Int ; 25(31): 31368-31380, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30196460

RESUMO

The response of giant reed (Arundo donax L.) to selenium (Se), added as selenate, was studied. The development, stress response, uptake, translocation, and accumulation of Se were documented in three giant reed ecotypes STM (Hungary), BL (USA), and ESP (Spain), representing different climatic zones. Plantlets regenerated from sterile tissue cultures were grown under greenhouse conditions in sand supplemented with 0, 2.5, 5, and 10 mg Se kg-1 added as sodium selenate. Total Se content was measured in different plant parts using hydride generation atomic fluorescence spectroscopy. All plants developed normally in the 0-5.0 mg Se kg-1 concentration range regardless of ecotype, but no growth occurred at 10.0 mg Se kg-1. There were no signs of chlorosis or necrosis, and the photosynthetic machinery was not affected as evidenced by no marked differences in the structure of thylakoid membranes. There was no change in the maximum quantum yield of photosystem II (Fv/Fm ratio) in the three ecotypes under Se stress, except for a significant negative effect in the ESP ecotype in the 5.0 mg Se kg-1 treatment. Glutathione peroxidase (GPx) activity increased as the Se concentration increased in the growth medium. GPx activity was higher in the shoot system than the root system in all Se treatments. All ecotypes showed great capacity of take up, translocate and accumulate selenium in their stem and leaf. Relative Se accumulation is best described as leaf ˃˃ stem ˃ root. The ESP ecotype accumulated 1783 µg g-1 in leaf, followed by BL with 1769 µg g-1, and STM with 1606 µg g-1 in the 5.0 mg Se kg-1 treatment. All ecotypes showed high values of translocation and bioaccumulation factors, particularly the ESP ecotype (10.1 and 689, respectively, at the highest tolerated Se supplementation level). Based on these findings, Arundo donax has been identified as the first monocot hyperaccumulator of selenium, because Se concentration in the leaves of all three ecotypes, and also in the stem of the ESP ecotype, is higher than 0.1% (dry weight basis) under the conditions tested. Tolerance up to 5.0 mg Se kg-1 and the Se hyperaccumulation capacity make giant reed a promising tool for Se phytoremediation.


Assuntos
Biodegradação Ambiental , Poaceae/metabolismo , Ácido Selênico/toxicidade , Selênio/metabolismo , Biomassa , Ecótipo , Poaceae/efeitos dos fármacos , Ácido Selênico/metabolismo , Espectrometria de Fluorescência
8.
Acta Biol Hung ; 69(2): 197-209, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29888665

RESUMO

Selenium (Se) is an essential element for animals and humans, but not plants. However, the capacity of some plants to accumulate and transform Se into bioactive compounds has important implications for human nutrition and health. In this study, sunflower (Helianthus annuus) and maize (Zea mays) seedlings were cultivated in soil to investigate the effect of different rates of sodium selenite (1-90 mg kg-1 soil) and sodium selenate (1-30 mg kg-1 soil) on absorption and translocation of Se and sulphur (S). Sodium selenate decreased growth of sunflower roots at all applied rates and of maize roots at the highest rate applied. In contrast, sodium selenite up to 30 mg kg-1 for sunflower and 3 mg kg-1 for maize resulted in increased shoot and root growth. An increase in Se concentration in soil resulted in an increase in Se and a decrease in S accumulation in roots and shoots of both maize and sunflower. Selenium translocation from roots to shoot was higher in sunflower than maize. Root-to-shoot translocation of Se was 5 to 30 times greater in sunflower and 0.4 to 3 times greater in maize in the sodium selenate than sodium selenite treatments. Sunflower, as a Se-hyperaccumulator with up to 1.8 g kg-1 in shoots (with no significant decrease in shoot biomass) can be a valuable plant in biofortification to improve animal/human nutrition, as well as in phytoremediation of contaminated sites to restore ecosystem services.


Assuntos
Helianthus/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Ácido Selênico/metabolismo , Selenito de Sódio/metabolismo , Enxofre/metabolismo , Zea mays/metabolismo , Selênio/metabolismo , Solo
9.
Plant Foods Hum Nutr ; 72(2): 168-175, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28353095

RESUMO

Selenium deficiency in various degrees affects around 15% of the world's population, contributing to a variety of health problems. In this study, we examined the accumulation and biotransformation of soil applied Se-supplementation (sodium selenite and sodium selenate forms) at different concentrations, along with growth and yield formation of green pea, in a greenhouse experiment. Biotransformation of inorganic Se was evaluated using HPLC-ICP-MS for Se-species separation in the above ground parts of green pea. Results showed 3 mg kg-1 SeIV increased green pea growth biomarkers and also caused an increase in protein content in leaves by 17%. Selenomethionine represented 65% of the total selenium content in shoots, but was lower in pods and seeds (54 and 38%, respectively). Selenomethionine was the major species in all plant parts and the only organic selenium form in the lower SeIV concentration range. Elevating the dose of SeIV (≥30 mg kg-1) triggered detrimental effects on growth and protein content and caused higher accumulation of inorganic Se in forms of SeVI and SeIV. Selenocysteine, another organic form of proteinogenic amino acid, was determined when SeIV (≥10 mg kg-1) was applied in higher concentrations. Thus, agronomic biofortification using the appropriate chemical form and concentration of Se will have positive effects on green pea growth and its enriched shoots and seeds provide a value-added protein source for livestock and humans with significant increased selenomethionine.


Assuntos
Suplementos Nutricionais , Pisum sativum/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Selênio/metabolismo , Animais , Biotransformação , Humanos , Gado , Compostos Organosselênicos/análise , Compostos Organosselênicos/metabolismo , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Ácido Selênico/metabolismo , Selênio/análise , Selenometionina/análise , Selenometionina/metabolismo , Selenito de Sódio/metabolismo
10.
Acta Biol Hung ; 68(1): 60-72, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28322089

RESUMO

Supplement of common fertilizers with selenium (Se) for crop production will be an effective way to produce selenium-rich food and feed. The value of green pea seeds and forages as alternative protein source can be improved by using agronomic biofortification. Therefore, biological changes of green pea (Pisum sativum L.) and influences of inorganic forms of Se (sodium selenite and sodium selenate) at different concentrations on the accumulation of magnesium (Mg) and phosphorus (P) were investigated in greenhouse experiment. 3 mg kg-1 of selenite had positive effects to enhance photosynthetic attributes and decrease lipid peroxidation significantly. At the same time, Se accumulation increased in all parts of plant by increasing Se supply. Moreover, Mg and P accumulations were significantly increased at 3 mg kg-1 selenite and 1 mg kg-1 selenate treatments, respectively. By contrast higher selenite concentrations (≥30 mg kg-1) exerted toxic effects on plants. Relative chlorophyll content, actual photochemical efficiency of PSII (ФPSII) and Mg accumulation showed significant decrease while membrane lipid peroxidation increased. Thus, the present findings prove Se biofortification has positive effects on biological traits of green pea to provide it as a proper functional product.


Assuntos
Fertilizantes , Pisum sativum/metabolismo , Ácido Selênico/metabolismo , Selenito de Sódio/metabolismo , Ração Animal/análise , Animais , Humanos , Magnésio/metabolismo , Malondialdeído/metabolismo , Pisum sativum/química , Pisum sativum/efeitos dos fármacos , Peroxidase/metabolismo , Fósforo/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Sementes/química , Sementes/efeitos dos fármacos , Sementes/metabolismo , Ácido Selênico/farmacologia , Selenito de Sódio/farmacologia , Verduras/química , Verduras/efeitos dos fármacos , Verduras/metabolismo
11.
Bull Environ Contam Toxicol ; 97(5): 709-713, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27613423

RESUMO

Several studies have demonstrated that selenium (Se) at low concentrations is beneficial, whereas high Se concentrations can induce toxicity. Controlling Se uptake, metabolism, translocation and accumulation in plants is important to decrease potential health risks and helping to select proper biofortification methods to improve the nutritional content of plant-based foods. The uptake and distribution of Se, changes in Se content, and effects of various concentrations of Se in two forms (sodium selenite and sodium selenate) on sunflower and maize plants were measured in nutrient solution experiments. Results revealed the Se content in shoots and roots of both sunflower and maize plants significantly increased as the Se level increased. In this study, the highest exposure concentrations (30 and 90 mg/L, respectively) caused toxicity in both sunflower and maize. While both Se forms damaged and inhibited plant growth, each behaved differently, as toxicity due to selenite was observed more than in the selenate treatments. Sunflower demonstrated a high Se accumulation capacity, with higher translocation of selenate from roots to shoots compared with selenite. Since in seleniferous soils, a high change in plants' capability exists to uptake Se from these soils and also most of the cultivated crop plants have a bit tolerance to high Se levels, distinction of plants with different Se tolerance is important. This study has tried to discuss about it.


Assuntos
Helianthus/metabolismo , Ácido Selênico/toxicidade , Selenito de Sódio/toxicidade , Zea mays/metabolismo , Hidroponia , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Solo
12.
Acta Biol Hung ; 64(1): 60-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23567831

RESUMO

Biofertilizers are used to improve soil fertility and plant production in sustainable agriculture. However, their applicability depends on several environmental parameters. The aim of our study was to evaluate the effect of free-living bacteria containing fertilizer on the growth of cucumber (Cucumis sativus L. cvs. Delicates) under aluminium (Al) stress. Different responses to Al stress of cucumber growth parameters were examined in terms of root elongation and physiological traits, such as Spad index (relative chlorophyll value), biomass accumulation of root and shoot, Al uptake and selected element contents (Fe, Mn, Zn, Mg) of leaves and root. The applied bacteria containing biofertilizer contains Azotobacter chroococcum and Bacillus megaterium. The dry weights of cucumber shoots and roots decreased in line with the increasing Al concentration. Due to different Al treatments (10-3 M, 10-4 M) higher Al concentration was observed in the leaves, while the amounts of other elements (Fe, Mn, Zn, Mg) decreased. This high Al content of the leaves decreased below the control value when biofertilizer was applied. In the case of the roots the additional biofertilizer treatments compensated the effect of Al. The relative chlorophyll content was reduced during Al-stress in older plants and the biofertilizer moderated this effect. The root/shoot ratio was decreased in all the Al-treatments in comparison to the control. The living bacteria containing fertilizer also had a modifying effect. The root/shoot ratio increased at the 10-4 M Al2(SO4)2 + biofertilizer and 10-4 M Al(NO3)3 + biofertilizer treatments compared to the control and Al-treatments. According to our results the biofertilizer is an alternative nutrient supply for replacing chemical fertilizers because it enhances dry matter production. Biofertilizer usage is also offered under Al polluted environmental conditions. Although, the nutrient solution is a clean system where we can examine the main processes without other effects of natural soils. The soil can modify the results, e.g. the soil-born microorganisms affect nutrient availability, and also can modify the harmful effects of different heavy metals. The understanding of basic processes will help us to know more about the soil behaviour.


Assuntos
Alumínio/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Fertilizantes , Azotobacter/fisiologia , Bacillus megaterium/fisiologia , Cucumis sativus/metabolismo , Estresse Fisiológico
13.
J Environ Biol ; 33(2 Suppl): 425-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23424847

RESUMO

The protection of our environment is a common task. All pollution that expose our soils, plants or in the narrower and wider sense environment will appear sooner or later in the food chain and in human beings who are at the top of the food-chain pyramid. The aim of our work is to give a brief overview about the effects of some industrial wastes on the physiological parameters of plants. Compost, black soot, sewage sludge and lime sludge dust was examined. Sunflower seeds were used in the experiments. The filtrates of examined materials were added to the nutrient solution in different quantities because of different solubility. The contents of sample elements and uptake of the element were measured by ICP, the relative chlorophyll contents by SPAD 502. Disadvantageous and advantageous physiological effects of compost, black soot, sewage sludge and lime sludge were proved. Larger concentrations of aluminium were measured in the roots than in the shoots. The concentrations of chrome were below the control value in the shoots when black soot, compost, lime sludge and sewage sludge were added to the nutrient solution. The concentrations of zinc, phosphorous, magnesium and copper were very low when black soot was used, and it was lower than the control. The dry matter of shoots increased when compost and sewage sludge was used, but the growth of roots remained under the control level.


Assuntos
Fertilizantes/análise , Resíduos Industriais , Solo/química , Germinação , Helianthus , Sementes , Resíduos Sólidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA