Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
2.
Sci Adv ; 10(7): eadh8478, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363844

RESUMO

The first definitive hematopoietic progenitors emerge through the process of endothelial-to-hematopoietic transition in vertebrate embryos. With molecular regulators for this process worked out, the role of metabolic pathways used remains unclear. Here, we performed nano-LC-MS/MS-based proteomic analysis and predicted a metabolic switch from a glycolytic to oxidative state upon hematopoietic transition. Mitochondrial activity, glucose uptake, and glycolytic flux analysis supported this hypothesis. Systemic inhibition of lactate dehydrogenase A (LDHA) increased oxygen consumption rate in the hemato-endothelial system and inhibited the emergence of intra-aortic hematopoietic clusters. These findings were corroborated using Tie2-Cre-mediated deletion of Ldha that showed similar effects on hematopoietic emergence. Conversely, stabilization of HIF-1α via inhibition of oxygen-sensing pathway led to decreased oxidative flux and promoted hematopoietic emergence in mid-gestation embryos. Thus, cell-intrinsic regulation of metabolic state overrides oxygenated microenvironment in the aorta to promote a glycolytic metabolic state that is crucial for hematopoietic emergence in mammalian embryos.


Assuntos
Células-Tronco Hematopoéticas , Proteômica , Animais , Células-Tronco Hematopoéticas/metabolismo , Espectrometria de Massas em Tandem , Endotélio Vascular/metabolismo , Hematopoese/fisiologia , Mamíferos
3.
Adv Sci (Weinh) ; 11(7): e2307554, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037844

RESUMO

Terminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to differentiate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, it demonstrates that a hyperosmolar environment enforces a protective p53-independent quiescent state in immature hepatoma cells and in pluripotent stem cell-derived models of human hepatocytes and endothelial cells. Prolonged culture in hyperosmolar conditions stimulates changes in gene expression promoting functional cell maturation. Interestingly, hyperosmolar conditions do not only trigger growth arrest and cellular maturation but are also necessary to maintain this maturated state, as switching back to plasma osmolarity reverses the changes in expression of maturation and proliferative markers. Transcriptome analysis revealed sequential stages of osmolarity-regulated growth arrest followed by cell maturation, mediated by activation of NF-κВ, and repression of WNT signaling, respectively. This study reveals that a modulated increase in osmolarity serves as a biochemical signal to promote long-term growth arrest and cellular maturation into different lineages, providing a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.


Assuntos
Células Endoteliais , Via de Sinalização Wnt , Humanos , Diferenciação Celular/fisiologia , Ciclo Celular , Perfilação da Expressão Gênica
4.
Stem Cells ; 41(11): 1076-1088, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37616601

RESUMO

Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) hold great promise for liver disease modeling, drug discovery, and drug toxicity screens. Yet, several hurdles still need to be overcome, including among others decrease in the cost of goods to generate HLCs and automation of the differentiation process. We here describe that the use of an automated liquid handling system results in highly reproducible HLC differentiation from hPSCs. This enabled us to screen 92 chemicals to replace expensive growth factors at each step of the differentiation protocol to reduce the cost of goods of the differentiation protocol by approximately 79%. In addition, we also evaluated several recombinant extracellular matrices to replace Matrigel. We demonstrated that differentiation of hPSCs on Laminin-521 using an optimized small molecule combination resulted in HLCs that were transcriptionally identical to HLCs generated using the growth factor combinations. In addition, the HLCs created using the optimized small molecule combination secreted similar amounts of albumin and urea, and relatively low concentrations of alfa-fetoprotein, displayed similar CYP3A4 functionality, and a similar drug toxicity susceptibility as HLCs generated with growth factor cocktails. The broad applicability of the new differentiation protocol was demonstrated for 4 different hPSC lines. This allowed the creation of a scalable, xeno-free, and cost-efficient hPSC-derived HLC culture, suitable for high throughput disease modeling and drug screenings, or even for the creation of HLCs for regenerative therapies.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Diferenciação Celular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
5.
Cells ; 12(10)2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37408218

RESUMO

Pathological abnormalities in the tau protein give rise to a variety of neurodegenerative diseases, conjointly termed tauopathies. Several tau mutations have been identified in the tau-encoding gene MAPT, affecting either the physical properties of tau or resulting in altered tau splicing. At early disease stages, mitochondrial dysfunction was highlighted with mutant tau compromising almost every aspect of mitochondrial function. Additionally, mitochondria have emerged as fundamental regulators of stem cell function. Here, we show that compared to the isogenic wild-type triple MAPT-mutant human-induced pluripotent stem cells, bearing the pathogenic N279K, P301L, and E10+16 mutations, exhibit deficits in mitochondrial bioenergetics and present altered parameters linked to the metabolic regulation of mitochondria. Moreover, we demonstrate that the triple tau mutations disturb the cellular redox homeostasis and modify the mitochondrial network morphology and distribution. This study provides the first characterization of disease-associated tau-mediated mitochondrial impairments in an advanced human cellular tau pathology model at early disease stages, ranging from mitochondrial bioenergetics to dynamics. Consequently, comprehending better the influence of dysfunctional mitochondria on the development and differentiation of stem cells and their contribution to disease progression may thus assist in the potential prevention and treatment of tau-related neurodegeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas tau , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Mitocôndrias/metabolismo , Metabolismo Energético
6.
Cells ; 12(2)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672236

RESUMO

Liver transplantation is currently the only curative therapy for patients with acute or chronic liver failure. However, a dramatic gap between the number of available liver grafts and the number of patients on the transplantation waiting list emphasizes the need for valid liver substitutes. Whole-organ engineering is an emerging field of tissue engineering and regenerative medicine. It aims to generate transplantable and functional organs to support patients on transplantation waiting lists until a graft becomes available. It comprises two base technologies developed in the last decade; (1) organ decellularization to generate a three-dimensional (3D) extracellular matrix scaffold of an organ, and (2) scaffold recellularization to repopulate both the parenchymal and vascular compartments of a decellularized organ. In this review article, recent advancements in both technologies, in relation to liver whole-organ engineering, are presented. We address the potential sources of hepatocytes and non-parenchymal liver cells for repopulation studies, and the role of stem-cell-derived liver progeny is discussed. In addition, different cell seeding strategies, possible graft modifications, and methods used to evaluate the functionality of recellularized liver grafts are outlined. Based on the knowledge gathered from recent transplantation studies, future directions are summarized.


Assuntos
Transplante de Fígado , Alicerces Teciduais , Humanos , Fígado , Hepatócitos , Engenharia Tecidual/métodos , Transplante de Fígado/métodos
7.
iScience ; 25(10): 105171, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36204266

RESUMO

Interaction with microenvironmental factors is crucial for the regulation of hematopoietic stem cell (HSC) function. Stroma derived factor (SDF)-1α supports HSCs in the quiescent state and is central to the homing of transplanted HSCs. Here, we show that integrin signaling regulates Sdf-1α expression transcriptionally. Systemic deletion of Periostin, an Integrin-αv ligand, showed increased expression of Sdf-1α in bone marrow (BM) niche. Pharmacological inhibition or CRISPR-Cas9-mediated deletion of SRC, resulted in a similar increase in the chemokine expression in vitro. Importantly, systemic SRC-inhibition led to increase in SDF-1α levels in BM plasma. This resulted in a robust increase (14.05 ± 1.22% to 29.11 ± 0.69%) in the homing efficiency of transplanted HSCs. In addition, we observed enhancement in the recovery of blood cell counts following radiation injury, indicating an enhanced hematopoietic function. These results establish a role of SRC-mediated integrin signaling in the transcriptional regulation of Sdf-1α. This mechanism could be harnessed further to improve the hematopoietic function.

8.
Cells ; 11(3)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159250

RESUMO

The pharmaceutical industry is in high need of efficient and relevant in vitro liver models, which can be incorporated in their drug discovery pipelines to identify potential drugs and their toxicity profiles. Current liver models often rely on cancer cell lines or primary cells, which both have major limitations. However, the development of human induced pluripotent stem cells (hiPSCs) has created a new opportunity for liver disease modeling, drug discovery and liver toxicity research. hiPSCs can be differentiated to any cell of interest, which makes them good candidates for disease modeling and drug discovery. Moreover, hiPSCs, unlike primary cells, can be easily genome-edited, allowing the creation of reporter lines or isogenic controls for patient-derived hiPSCs. Unfortunately, even though liver progeny from hiPSCs has characteristics similar to their in vivo counterparts, the differentiation of iPSCs to fully mature progeny remains highly challenging and is a major obstacle for the full exploitation of these models by pharmaceutical industries. In this review, we discuss current liver-cell differentiation protocols and in vitro iPSC-based liver models that could be used for disease modeling and drug discovery. Furthermore, we will discuss the challenges that still need to be overcome to allow for the successful implementation of these models into pharmaceutical drug discovery platforms.


Assuntos
Células-Tronco Pluripotentes Induzidas , Hepatopatias , Diferenciação Celular , Descoberta de Drogas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Hepatopatias/metabolismo
9.
Stem Cell Reports ; 17(2): 352-368, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35090586

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle disorder caused by mutations in the Dystrophin gene. Cardiomyopathy is a major cause of early death. We used DMD-patient-specific human induced pluripotent stem cells (hiPSCs) to model cardiomyopathic features and unravel novel pathologic insights. Cardiomyocytes (CMs) differentiated from DMD hiPSCs showed enhanced premature cell death due to significantly elevated intracellular reactive oxygen species (ROS) resulting from depolarized mitochondria and increased NADPH oxidase 4 (NOX4). CRISPR-Cas9 correction of Dystrophin restored normal ROS levels. ROS reduction by N-acetyl-L-cysteine (NAC), ataluren (PTC124), and idebenone improved hiPSC-CM survival. We show that oxidative stress in DMD hiPSC-CMs was counteracted by stimulating adenosine triphosphate (ATP) production. ATP can bind to NOX4 and partially inhibit the ROS production. Considering the complexity and the early cellular stress responses in DMD cardiomyopathy, we propose targeting ROS production and preventing detrimental effects of NOX4 on DMD CMs as promising therapeutic strategy.


Assuntos
Distrofia Muscular de Duchenne/patologia , NADPH Oxidase 4/metabolismo , Estresse Oxidativo , Acetilcisteína/farmacologia , Trifosfato de Adenosina/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Distrofina/genética , Distrofina/metabolismo , Edição de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Distrofia Muscular de Duchenne/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oxidiazóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
Arch Toxicol ; 95(10): 3285-3302, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480604

RESUMO

Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62-1000 nM) or diethyl maleate (5.62-1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.


Assuntos
Heme Oxigenase-1/genética , Células-Tronco Pluripotentes Induzidas/citologia , Estresse Oxidativo/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Maleatos/administração & dosagem , Maleatos/toxicidade , Pessoa de Meia-Idade , Ácido Oleanólico/administração & dosagem , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/toxicidade , RNA Mensageiro/genética , Fatores de Tempo
11.
Cell Rep ; 36(8): 109618, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433017

RESUMO

Hematopoietic stem and progenitor cell (HSPC) engraftment after transplantation during anticancer treatment depends on support from the recipient bone marrow (BM) microenvironment. Here, by studying physiological homing of fetal HSPCs, we show the critical requirement of balanced local crosstalk within the skeletal niche for successful HSPC settlement in BM. Transgene-induced overproduction of vascular endothelial growth factor (VEGF) by osteoprogenitor cells elicits stromal and endothelial hyperactivation, profoundly impacting the stromal-vessel interface and vascular architecture. Concomitantly, HSPC homing and survival are drastically impaired. Transcriptome profiling, flow cytometry, and high-resolution imaging indicate alterations in perivascular and endothelial cell characteristics, vascular function and cellular metabolism, associated with increased oxidative stress within the VEGF-enriched BM environment. Thus, developmental HSPC homing to bone is controlled by local stromal-vascular integrity and the oxidative-metabolic status of the recipient milieu. Interestingly, irradiation of adult mice also induces stromal VEGF expression and similar osteo-angiogenic niche changes, underscoring that our findings may contribute targets for improving stem cell therapies.


Assuntos
Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células da Medula Óssea/citologia , Movimento Celular/fisiologia , Células Cultivadas , Camundongos , Nicho de Células-Tronco/fisiologia , Transplante de Células-Tronco/métodos
12.
Front Mol Neurosci ; 14: 713031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366786

RESUMO

Frontotemporal dementia (FTD) is a neurodegenerative disease, leading to behavioral changes and language difficulties. Heterozygous loss-of-function mutations in progranulin (GRN) induce haploinsufficiency of the protein and are associated with up to one-third of all genetic FTD cases worldwide. While the loss of GRN is primarily associated with neurodegeneration, the biological functions of the secreted growth factor-like protein are more diverse, ranging from wound healing, inflammation, vasculogenesis, and metabolic regulation to tumor cell growth and metastasis. To date, no disease-modifying treatments exist for FTD, but different therapeutic approaches to boost GRN levels in the central nervous system are currently being developed (including AAV-mediated GRN gene delivery as well as anti-SORT1 antibody therapy). In this review, we provide an overview of the multifaceted regulation of GRN levels and the corresponding therapeutic avenues. We discuss the opportunities, advantages, and potential drawbacks of the diverse approaches. Additionally, we highlight the therapeutic potential of elevating GRN levels beyond patients with loss-of-function mutations in GRN.

13.
Biomaterials ; 276: 121006, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34304139

RESUMO

Chronic liver injury, as observed in non-alcoholic steatohepatitis (NASH), progressive fibrosis, and cirrhosis, remains poorly treatable. Steatohepatitis causes hepatocyte loss in part by a direct lipotoxic insult, which is amplified by derangements in the non-parenchymal cellular (NPC) interactive network wherein hepatocytes reside, including, hepatic stellate cells, liver sinusoidal endothelial cells and liver macrophages. To create an in vitro culture model encompassing all these cells, that allows studying liver steatosis, inflammation and fibrosis caused by NASH, we here developed a fully defined hydrogel microenvironment, termed hepatocyte maturation (HepMat) gel, that supports maturation and maintenance of pluripotent stem cell (PSC) derived hepatocyte- and NPC-like cells for at least one month. The HepMat-based co-culture system modeled key molecular and functional features of TGFß-induced liver fibrosis and fatty-acid induced inflammation and fibrosis better than monocultures of its constituent cell populations. The novel co-culture system should open new avenues for studying mechanisms underlying liver steatosis, inflammation and fibrosis as well as for assessing drugs counteracting these effects.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Células-Tronco Pluripotentes , Animais , Células Endoteliais , Fibrose , Hepatócitos/patologia , Fígado/patologia , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL
14.
Stem Cells Dev ; 30(14): 714-724, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33938231

RESUMO

Autosomal recessive hypercholesterolemia (ARH) is a rare monogenic disorder caused by pathogenic variants in the low-density lipoprotein receptor (LDLR) adaptor protein 1 (LDLRAP1) gene, encoding for the LDLRAP1 protein, which impairs internalization of hepatic LDLR. There are variable responses of ARH patients to treatment and the pathophysiological mechanism(s) for this variability remains unclear. This is in part caused by absence of reliable cellular models to evaluate the effect of LDLRAP1 mutations on the LDLRAP1 protein function and its role in LDLR internalization. Here, we aimed to validate patient-specific induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) as an appropriate tool to model ARH disease. Fibroblasts from an ARH patient carrying the recently reported nonsense mutation, c.649G>T, were reprogrammed into hiPSCs using Sendai viral vectors. In addition, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to create an LDLRAP1 gene (also known as ARH) knockout in two different human iPSC lines. ARH patient-derived iPSCs, ARH-knockout iPSC lines, and control iPSCs were efficiently differentiated into HLCs. Western blot analysis demonstrated the absence of LDLRAP1 in HLCs derived from patient and knockout iPSCs, and this was associated with a decreased low-density lipoprotein cholesterol (LDL-C) uptake in ARH-mutant/knockout HLCs compared to control HLCs. In conclusion, we determined that the recently described c.649G>T point mutation in LDLRAP1 induces absence of the LDLRAP1 protein, similar to what is seen following LDLRAP1 knockout. This causes a decreased, although not fully absent, LDL-uptake in ARH-mutant/knockout HLCs. As knockout of LDLRAP1 or presence of the c.649G>T point mutation results in absence of LDLRAP1 protein, residual LDL uptake might be regulated by LDLRAP1-independent internalization mechanisms. Patient-specific iPSC-derived HLCs can therefore be a powerful tool to further decipher LDLRAP1 mutations and function of the protein.


Assuntos
Hipercolesterolemia Familiar Homozigota , Hipercolesterolemia , Células-Tronco Pluripotentes Induzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepatócitos/metabolismo , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
15.
Nat Protoc ; 16(5): 2542-2563, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33864055

RESUMO

Hepatic stellate cells (HSCs) are nonparenchymal liver cells responsible for extracellular matrix homeostasis and are the main cells involved in the development of liver fibrosis following injury. The lack of reliable sources of HSCs has hence limited the development of complex in vitro systems to model liver diseases and toxicity. Here we describe a protocol to differentiate human induced pluripotent stem cells (iPSCs) into hepatic stellate cells (iPSC-HSCs). The protocol is based on the addition of several growth factors important for liver development sequentially over 12 d. iPSC-HSCs present phenotypic and functional characteristics of primary HSCs and can be expanded or frozen and used to perform high-throughput in vitro studies. We also describe how to coculture iPSC-HSCs with hepatocytes, which self-assemble into three-dimensional (3D) hepatic spheroids. This protocol enables the generation of HSC-like cells for in vitro modeling and drug screening studies.


Assuntos
Diferenciação Celular , Técnicas Citológicas/métodos , Células Estreladas do Fígado/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Esferoides Celulares/citologia
16.
J Immunol ; 206(7): 1549-1560, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33637617

RESUMO

Outside-in integrin signaling regulates cell fate decisions in a variety of cell types, including hematopoietic stem cells (HSCs). Our earlier published studies showed that interruption of periostin (POSTN) and integrin-αv (ITGAV) interaction induces faster proliferation in HSCs with developmental stage-dependent functional effects. In this study, we examined the role of POSTN-ITGAV axis in lymphohematopoietic activity in spleen that hosts a rare population of HSCs, the functional regulation of which is not clearly known. Vav-iCre-mediated deletion of Itgav in the hematopoietic system led to higher proliferation rates, resulting in increased frequency of primitive HSCs in the adult spleen. However, in vitro CFU-C assays demonstrated a poorer differentiation potential following Itgav deletion. This also led to a decrease in the white pulp area with a significant decline in the B cell numbers. Systemic deletion of its ligand, POSTN, phenocopied the effects noted in Vav-Itgav-/- mice. Histological examination of Postn-deficient spleen also showed an increase in the spleen trabecular areas. Importantly, these are the myofibroblasts of the trabecular and capsular areas that expressed high levels of POSTN within the spleen tissue. In addition, vascular smooth muscle cells also expressed POSTN. Through CFU-S12 assays, we showed that hematopoietic support potential of stroma in Postn-deficient splenic hematopoietic niche was defective. Overall, we demonstrate that POSTN-ITGAV interaction plays an important role in spleen lymphohematopoiesis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Integrina alfa5/metabolismo , Linfócitos/fisiologia , Miócitos de Músculo Liso/fisiologia , Miofibroblastos/fisiologia , Baço/imunologia , Animais , Moléculas de Adesão Celular/genética , Proliferação de Células , Técnicas de Silenciamento de Genes , Hematopoese , Integrina alfa5/genética , Camundongos , Camundongos Knockout , Transdução de Sinais , Nicho de Células-Tronco
17.
Cell Death Dis ; 12(1): 84, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446637

RESUMO

To date, there is no representative in vitro model for liver sinusoidal endothelial cells (LSECs), as primary LSECs dedifferentiate very fast in culture and no combination of cytokines or growth factors can induce an LSEC fate in (pluripotent stem cell (PSC)-derived) endothelial cells (ECs). Furthermore, the transcriptional programmes driving an LSEC fate have not yet been described. Here, we first present a computational workflow (CenTFinder) that can identify transcription factors (TFs) that are crucial for modulating pathways involved in cell lineage specification. Using CenTFinder, we identified several novel LSEC-specific protein markers, such as FCN2 and FCN3, which were validated by analysis of previously published single-cell RNAseq data. We also identified PU.1 (encoded by the SPI1 gene) as a major regulator of LSEC-specific immune functions. We show that SPI1 overexpression (combined with the general EC TF ETV2) in human PSCs induces ECs with an LSEC-like phenotype. The ETV2-SPI1-ECs display increased expression of LSEC markers, such as CD32B and MRC1, as well as several of the proposed novel markers. More importantly, ETV2-SPI1-ECs acquire LSEC functions, including uptake of FSA-FITC, as well as labelled IgG. In conclusion, we present the CenTFinder computational tool to identify key regulatory TFs within specific pathways, in this work pathways of lineage specification, and we demonstrate its use by the identification and validation of PU.1 as a master regulator for LSEC fating.


Assuntos
Células Endoteliais/metabolismo , Fígado/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Humanos , Fígado/citologia , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Pluripotentes/citologia
18.
Toxics ; 10(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35051043

RESUMO

Traditional toxicity risk assessment approaches have until recently focussed mainly on histochemical readouts for cell death. Modern toxicology methods attempt to deduce a mechanistic understanding of pathways involved in the development of toxicity, by using transcriptomics and other big data-driven methods such as high-content screening. Here, we used a recently described optimised method to differentiate human induced pluripotent stem cells (hiPSCs) to hepatocyte-like cells (HLCs), to assess their potential to classify hepatotoxic and non-hepatotoxic chemicals and their use in mechanistic toxicity studies. The iPSC-HLCs could accurately classify chemicals causing acute hepatocellular injury, and the transcriptomics data on treated HLCs obtained by TempO-Seq technology linked the cytotoxicity to cellular stress pathways, including oxidative stress and unfolded protein response (UPR). Induction of these stress pathways in response to amiodarone, diclofenac, and ibuprofen, was demonstrated to be concentration and time dependent. The transcriptomics data on diclofenac-treated HLCs were found to be more sensitive in detecting differentially expressed genes in response to treatment, as compared to existing datasets of other diclofenac-treated in vitro hepatocyte models. Hence iPSC-HLCs generated by transcription factor overexpression and in metabolically optimised medium appear suitable for chemical toxicity detection as well as mechanistic toxicity studies.

19.
Clin Genet ; 99(1): 67-83, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32506418

RESUMO

The fact that monogenic diseases are related to mutations in one specific gene, make gene correction one of the promising strategies in the future to treat genetic diseases or alleviate their symptoms. From this perspective, and along with recent advances in technology, genome editing tools have gained momentum and developed fast. In fact, clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs) are regarded as novel technologies which are able to correct a number of genetic aberrations in vitro and in vivo. The number of ongoing clinical trials employing these tools has been increased showing the encouraging outcomes of these tools. However, there are still some major challenges with respect to the safety profile and directed delivery of them. In this paper, we provided updated information regarding the history, nature, methods of delivery, and application of the above-mentioned gene editing tools along with the meganucleases (an older similar tool) based on published in vitro and in vivo studies and introduced clinical trials which employed these technologies.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Humanos , Qualidade de Vida
20.
Nat Protoc ; 15(11): 3716-3744, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33097924

RESUMO

Oligodendrocytes (OLs) are responsible for myelin production and metabolic support of neurons. Defects in OLs are crucial in several neurodegenerative diseases including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). This protocol describes a method to generate oligodendrocyte precursor cells (OPCs) from human pluripotent stem cells (hPSCs) in only ~20 d, which can subsequently myelinate neurons, both in vitro and in vivo. To date, OPCs have been derived from eight different hPSC lines including those derived from patients with spontaneous and familial forms of MS and ALS, respectively. hPSCs, fated for 8 d toward neural progenitors, are transduced with an inducible lentiviral vector encoding for SOX10. The addition of doxycycline for 10 d results in >60% of cells being O4-expressing OPCs, of which 20% co-express the mature OL marker myelin basic protein (MBP). The protocol also describes an alternative for viral transduction, by incorporating an inducible SOX10 in the safe harbor locus AAVS1, yielding ~100% pure OPCs. O4+ OPCs can be purified and either cryopreserved or used for functional studies. As an example of the type of functional study for which the derived cells could be used, O4+ cells can be co-cultured with maturing hPSC-derived neurons in 96/384-well-format plates, allowing the screening of pro-myelinating compounds.


Assuntos
Bainha de Mielina/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Oligodendroglia/citologia , Células-Tronco Pluripotentes/citologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Humanos , Proteína Básica da Mielina/análise , Proteína Básica da Mielina/metabolismo , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Células-Tronco Pluripotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA