Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Microbiol ; 82(1): 21-38, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21819459

RESUMO

NAD+ is a central cofactor that plays important roles in cellular metabolism and energy production in all living cells. Genomics-based reconstruction of NAD+ metabolism revealed that Leishmania protozoan parasites are NAD+ auxotrophs. Consequently, these parasites require assimilating NAD+ precursors (nicotinamide, nicotinic acid, nicotinamide riboside) from their host environment to synthesize NAD+ by a salvage pathway. Nicotinamidase is a key enzyme of this salvage pathway that catalyses conversion of nicotinamide (NAm) to nicotinic acid (Na), and that is absent in higher eukaryotes. We present here the biochemical and functional characterizations of the Leishmania infantum nicotinamidase (LiPNC1). Generation of Lipnc1 null mutants leads to a decrease in NAD+ content, associated with a metabolic shutdown-like phenotype with an extensive lag phase of growth. Both phenotypes could be rescued by an add-back construct or by addition of exogenous Na. In addition, Lipnc1 null mutants were unable to establish a sustained infection in a murine experimental model. Altogether, these results illustrate that NAD+ homeostasis is a fundamental component of Leishmania biology and virulence, and that NAm constitutes its main NAD+ source in the mammalian host. The crystal structure of LiPNC1 we solved allows now the design of rational inhibitors against this new promising therapeutic target.


Assuntos
Proliferação de Células , Leishmania infantum/citologia , Leishmania infantum/enzimologia , Leishmaniose Visceral/parasitologia , NAD/biossíntese , Nicotinamidase/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Leishmania infantum/química , Leishmania infantum/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Nicotinamidase/química , Nicotinamidase/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência
2.
Parasitol Res ; 100(1): 1-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17048004

RESUMO

During the past few years, the silent information regulator SIR2 protein family has attracted great interest due to its implication in an organism's life span extension. They bear diverse subcellular localization and play a role in transcriptional silencing and DNA repair. The biochemical reaction catalysed by these enzymes (nicotinamide adenine dinucleotide-dependant deacetylase/adenosine diphosphate-ribosyl transferase) is supposed to be linked to metabolism. Members of this protein family were described in parasitic organisms, but little information is available on potential functions of such enzymes in these organisms. In this article, we review recent information on structure and peculiar functions of SIR2s in eukaryotes, with emphasis on parasitic protozoa, particularly the Trypanosomatidae. Through the enzyme localization and the diverse substrates and by-products of the enzymatic reactions, we approach the potential pathways in which the Leishmania cytosolic SIR2 protein can be involved.


Assuntos
Citosol/enzimologia , Histona Desacetilases/metabolismo , Leishmania/enzimologia , Sequência de Aminoácidos , Animais , Sequência Conservada , Dados de Sequência Molecular , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
3.
Tissue Cell ; 37(6): 469-78, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16246387

RESUMO

In this study Tc52, a Trypanosoma cruzi released protein, which exerts an immunoregulatory activity, was converted to a molecular form with altered biological function. Indeed, the genetic fusion of Tc52 to a carrier protein, the Shistosoma japonicum glutathione S-transferase (Tc52-Sj26), was shown to induce apoptosis in spleen cells from BALB/c or CBA mice and the human T-cell leukemic cell line (CEM). Cell death by apoptosis was evidenced by the following criteria: (1) increased binding of Annexin V to rTc52-treated spleen cells; (2) the presence of an ordered cleavage of the DNA backbone; (3) double labeling showed increased number of T cells undergoing apoptosis upon incubation with rTc52; (4) the use of a CEM cell line and TUNEL assay allowed to show in situ DNA fragmentation. Surprisingly, intraperitoneal injections of rTc52 to BALB/c mice, which were then infected with T. cruzi, resulted in increased parasiteamia levels and is congruent to 2.5 times increase of macrophages number. Since native Tc52 could not trigger, apoptosis of T cells we could hypothesized that the fusion of Tc52 with Sj26 led to conformational changes resulting in apoptosis inducing properties of rTc52. The possible in vivo physiopathological implications of these finding were discussed.


Assuntos
Apoptose , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Doença de Chagas , Fragmentação do DNA , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Parasitemia , Proteínas de Protozoários/farmacologia , Proteínas Recombinantes , Baço/citologia , Fatores de Tempo
4.
Antimicrob Agents Chemother ; 49(2): 808-12, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15673775

RESUMO

Our study represents the first report demonstrating the antileishmanial activity of nicotinamide (NAm), a form of vitamin B(3). A 5 mM concentration of NAm significantly inhibited the intracellular growth of Leishmania amastigotes and the NAD-dependent deacetylase activity carried by parasites overexpressing Leishmania major SIR2 (LmSIR2). However, the transgenic parasites were as susceptible as the wild-type parasites to NAm-induced cell growth arrest. Therefore, we conclude that NAm inhibits leishmanial growth and that overexpression of LmSIR2 does not overcome this inhibition. The mechanism of the inhibition is not defined but may include other in vivo targets. NAm may thus represent a new antileishmanial agent which could potentially be used in combination with other drugs during therapy.


Assuntos
Antiprotozoários , Leishmania major/efeitos dos fármacos , Niacinamida/farmacologia , Animais , Tratamento Farmacológico , Leishmania major/genética , Leishmania major/crescimento & desenvolvimento , Plasmídeos , Sirtuínas/genética
5.
Immunol Lett ; 86(2): 155-62, 2003 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-12644317

RESUMO

Dogs are the domestic reservoir of zoonotic visceral Leishmaniasis caused by Leishmania infantum in the Mediterranean basin and thus constitute an important health problem in both human and veterinary medicine. Until vaccines become available, conventional measures such as epidemiological surveillance including reservoir control will be among the practical options for prevention and containment of the disease. We have recently characterised novel Leishmania sp. genes encoding parasite proteins named (LmS3a: homologous to mammalian ribosomal protein S3a; LmSIR2: homologous to the silent information regulatory 2 protein family; LimTXNPx: homologous to the peroxiredoxin family with N-terminal mitochondrial leader sequence) that may contribute to the host immune dysfunction in murine experimental Leishmaniasis. In the present study we have investigated the humoral responses against the parasite antigens in groups of L. infantum-infected dogs with different clinical status: symptomatic and asymptomatic with DTH positive or negative test. The determination of immunoglobulin (Ig) isotypes revealed high levels of total IgG in both symptomatic and asymptomatic animals when compared to IgM. Furthermore, the IgG2 appeared to be the predominant subclass of Ig present in the sera of infected animals particularly in the case of symptomatic dogs. The IgG subclass reactivity analysis revealed a broad specific recognition range of parasite recombinant antigens. Interestingly, differential profiles of IgG1 and IgG2 antibody reactivity were observed in asymptomatic and symptomatic dogs. The LmSIR2 protein was found to be a highly reactive molecule with IgG2 from most of the asymptomatic and symptomatic animals. Considering the fact that LmSIR2 secreted by the parasites can be bound and taken up by neighbouring cells, the latter could be a target for anti-LmSIR2 antibodies and this may contribute to the immunopathological alterations and host tissue damage. The implications of these observations in the pathogenesis of Leishmaniasis are discussed.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Doenças do Cão/imunologia , Leishmania infantum/imunologia , Leishmaniose Visceral/veterinária , Sirtuínas/imunologia , Animais , Antígenos de Superfície/imunologia , Doenças do Cão/diagnóstico , Doenças do Cão/patologia , Cães , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Leishmaniose Visceral/imunologia , Proteínas de Protozoários/imunologia
7.
Gene ; 253(2): 271-80, 2000 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-10940565

RESUMO

We have previously identified a Trypanosoma cruzi cDNA encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin protein family involved in thiol-disulphide redox reactions. Furthermore, we reported that Tc52 also plays a role in T. cruzi-associated immunosuppression observed during Chagas' disease. Moreover, Tc52 gene targeting deletion strategy allowed us to demonstrate that monoallelic disruption of Tc52 resulted in the alteration of the metacyclogenesis process and the production of less virulent parasites. Sequence analysis of a 7358 bp genomic fragment containing the Tc52 encoding gene revealed two additional open reading frames (ORF-A and C). The ORFs are likely to have protein coding function by a number of criteria, including reverse transcriptase polymerase chain reaction (RT-PCR), Western blot and immunofluorescence analyses. The deduced amino-acid (aa) sequence of the ORF-A localized upstream of the Tc52 gene revealed that it contains within its N-terminus (aa 1 to 170) four RGG boxes known to act as RNA binding motifs in some proteins that interact with RNA, interspersed with a high density of glycine with regular spacing of tryptophan (WX(9-10)) in which X is often a glycine. Moreover, the C-terminal part of the ORF-C (aa 253-289) contains a motif that is strikingly similar (7-35% identity, 14-46% similarity over 28aa) to a short sequence (RNP1) comprising the consensus sequence RNA binding domain (CS-RBD) found in a number of proteins that interact with RNA. The aa sequence from the ORF-C localized downstream of the Tc52 gene showed significant homology to human adenosine deaminase acting on RNA (hADAT1) that specifically deaminates adenosine 37 to inosine in eukaryotic tRNA(Ala) and to its homologue yeast protein (Tad1p) (22-25% identity and an additional 38-40% similarity over 177aa). Moreover, highly similar motifs of the deaminase domain are present in the T. cruzi ORF-C. Furthermore, the 5' flanking regions of the genes contained repeat TATA and CAAT nucleotide sequences which resemble the motifs found upstream of the transcription initiation sites in eukaryotic promoters. Therefore, the characterization of novel T. cruzi genes encoding proteins which show similarity to components of RNA processing reactions provides new tools to investigate the gene expression regulation in these parasitic organisms. Moreover, our recent findings on the Tc52 encoding gene underline the interest of genetic manipulation of T. cruzi, not only making it possible to use more closely an in vitro approach to find out how genes function, but also to obtain 'attenuated' strains that could be used in the development of vaccinal strategies.


Assuntos
Genes de Protozoários/genética , Proteínas de Protozoários/genética , Edição de RNA , Trypanosoma cruzi/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Clonagem Molecular , DNA de Protozoário/química , DNA de Protozoário/genética , Imunofluorescência , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA