Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Water Res ; 253: 121297, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354662

RESUMO

One of the primary criteria for a suitable drug biomarker for wastewater-based epidemiology (WBE) is having a unique source representing human metabolism. For WBE studies, this means it is important to identify and monitor metabolites rather than parent drugs, to capture consumption of drugs and not fractions that could be directly disposed. In this study, a high-throughput workflow based on a human liver S9 fraction in vitro metabolism assay was developed to identify human transformation products of new chemicals, using α-pyrrolidino-2-phenylacetophenone (α-D2PV) as a case study. Analysis by liquid chromatography coupled to high resolution mass spectrometry identified four metabolites. Subsequently, a targeted liquid chromatography - tandem mass spectrometry method was developed for their analysis in wastewater samples collected from a music festival in Australia. The successful application of this workflow opens the door for future work to better understand the metabolism of chemicals and their detection and application for wastewater-based epidemiology.


Assuntos
Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Humanos , Espectrometria de Massas , Cromatografia Líquida/métodos , Austrália
2.
Sci Total Environ ; 921: 170934, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360330

RESUMO

BACKGROUND: In the context of drug prohibition, potential adulteration and variable purity pose additional health risks for people who use drugs, with these risks often compounded by the outdoor music festival environment. Ahead of the imminent implementation of drug checking services in Queensland, Australia, this study aims to characterise this problem using triangulated survey and wastewater data to understand self-reported and detected drug use among attendees of a multi-day Queensland-based music festival in 2021 and 2022. METHODS: We administered an in-situ survey focusing on drug use at the festival to two convenience samples of 136 and 140 festival attendees in 2021 and 2022 respectively. We compared survey findings to wastewater collected concurrently from the festival's site-specific wastewater treatment plant, which was analysed using Liquid Chromatography Tandem Mass Spectrometry. RESULTS: Most survey respondents (82 % in 2021, 92 % in 2022) reported using or intending to use an illicit drug at the festival. Some respondents reported potentially risky drug use practices such as using drugs found on the ground (2 % in 2021, 4 % in 2022). Substances detected in wastewater but not surveys include MDEA, mephedrone, methylone, 3-MMC, alpha-D2PV, etizolam, eutylone, and N,N-dimethylpentylone. CONCLUSION: Many substances detected in wastewater but not self-reported in surveys likely represent substitutions or adulterants. These findings highlight the benefits of drug checking services to prevent harms from adulterants and provide education on safer drug use practices. These findings also provide useful information on socio-demographic characteristics and drug use patterns of potential users of Queensland's future drug checking service.


Assuntos
Música , Transtornos Relacionados ao Uso de Substâncias , Humanos , Autorrelato , Águas Residuárias , Austrália , Férias e Feriados , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
3.
Sci Total Environ ; 905: 166816, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37689203

RESUMO

Pesticides are necessary for the control of pest plant, fungi and insect species. After application, they may find their way into waste streams, such as municipal sewage, where their spatio-temporal distribution has not been well characterised. To further understand the spatio-temporal distribution and to evaluate potential sources and fate after treatment, 64 pesticides were analysed in matched influents and effluents of 22 wastewater treatment plants (WWTPs) from across Australia. The pesticides consisted of 30 herbicides and 8 herbicide metabolites or transformation products, 16 insecticides and 10 fungicides. The samples were 1084 24-hr composite samples pooled into 113 samples. Pools represented two influent and one effluent pools at each of 22 sites in 2019, as well as two pools per year from 2009 to 2021 for an 11-year long-term temporal trend at a subset of two locations. The total population served by the 22 sites was equivalent to ~41 % of the Australian population. Of the 64 pesticides, 25 were detected in influent, with highest influent concentrations up to 100 µg/L and effluent concentrations up to 16 µg/L for the herbicide 2,4-D. The total mass of pesticides was extrapolated to Australia, suggesting ~33 t of the targeted pesticides entered WWTP influent annually nation-wide, with 14 t emitted into effluents annually. Long-term trends varied by analyte and for carbendazim decreases over time, may be related to restrictions in use. Risk quotients (RQs) were calculated for 14 analytes in the effluent. 35 % had an RQ above one, indicating a potential environmental risk. Fipronil had the highest RQ (49) at Site 6. The population-normalized mass loads of pesticides were site-specific, and in some cases correlated with land use attributes suggestive of point sources. This reflects a need to better characterise sources to enable prevention, or possible pre-treatment of pesticide-containing wastewater entering municipal sewage streams.


Assuntos
Herbicidas , Praguicidas , Poluentes Químicos da Água , Águas Residuárias , Esgotos/análise , Eliminação de Resíduos Líquidos , Praguicidas/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Austrália , Herbicidas/análise
4.
Water Res ; 244: 120452, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604019

RESUMO

Drug consumption in prisons is a concern for the safety of incarcerated people and staff. Typically, drug use prevalence in prisons is estimated through urinalysis and intelligence operations, which can be intrusive and stressful. An alternative approach, wastewater-based epidemiology (WBE), was used in this study to estimate the consumption of licit and illicit drugs for the entire population of a prison in Australia. Wastewater samples were collected from March to December 2020, covering periods of no restrictions and periods when prison access was restricted to prevent the transmission of COVID-19. Target biomarkers were analysed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The average consumption of common illicit drugs (MDMA, methamphetamine and cocaine) over the sampling period in the prison (0.5 - 4.5 mg/1000 people/day) was two to three orders of magnitude lower than in the community population (254 - 1000 mg/1000 people/day). Comparison of WBE estimates against pharmacy dispensing data suggested potential illicit buprenorphine consumption at the prison. Methamphetamine and buprenorphine use decreased when no visitors were allowed (18% - 72% decrease for methamphetamine; about half decrease for buprenorphine) and increased once these restrictions were eased (22% - 39% increase for methamphetamine; 44% - 67% increase for buprenorphine). The changes in drug use may be attributed in part to a reduction of drug trafficking into the prison from visitors or non-essential staffs and in part to the reduced contribution of urine from staff who used toilets within the prison. This study provided useful information on the scale of illicit drug use and extra-medical use of licit drugs in prison, and its changes under different security conditions.


Assuntos
Buprenorfina , COVID-19 , Drogas Ilícitas , Metanfetamina , Transtornos Relacionados ao Uso de Substâncias , Poluentes Químicos da Água , Humanos , Drogas Ilícitas/análise , Prisões , Águas Residuárias , Cromatografia Líquida , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem , COVID-19/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Metanfetamina/análise , Poluentes Químicos da Água/análise , Buprenorfina/análise
5.
Sci Total Environ ; 903: 166163, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574069

RESUMO

Wastewater-based epidemiology (WBE) relies on representative sampling that is typically achieved with autosamplers that collect time, flow, or volume proportional samples. The expense, resources and operational know-how associated with autosampler operation means they are only typically available at major wastewater treatment plants (WWTPs). This results in a lack of data on consumption levels in regional and remote areas, or in countries that lack the financial means. The aim of this study was to estimate and investigate trends in drug consumption across varying levels of remoteness in Australia. Field-calibrated, microporous polyethylene passive samplers were deployed over 2 periods (Aug/Sept 2019 and 2020) at 43 treatment plants covering all five categories of remoteness, as per Australian Bureau of Statistics definitions (Major cities, Inner regional, Outer regional, Remote, and Very remote). The per capita consumption of cocaine, methylamphetamine, nicotine, oxycodone and MDMA were estimated. No spatial trends between remoteness and drug consumption were observed, except for cocaine, where Major cities had a 5-to-10-fold higher consumption compared to the other levels of remoteness in 2019 and 2020, respectively. Outer regional sites had the highest and lowest methylamphetamine consumption. The variance in drug use among sites was much higher in Remote (and Inner/Outer regional) sites when compared with Major cities. A significant and consistent decrease in oxycodone consumption was observed at all sites between 2019 and 2020, possibly related to regulatory changes and the COVID-19 pandemic where elective surgeries were suspended. The majority of sites experienced a decrease in cocaine and methylamphetamine consumption, possibly due to border restrictions or changes in supply and demand dynamics. This was the first extensive passive sampling study to assess drug consumption in urban, regional, and remote locations, demonstrating that passive samplers can facilitate extension of wastewater-based drug monitoring programs to sites where other representative sampling options are very difficult to implement.

6.
Sci Total Environ ; 874: 162497, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36863593

RESUMO

Water resources are vulnerable to contamination from polar organic compounds (POCs) originating from sources such as wastewater effluent. Two configurations of a microporous polyethylene tube (MPT) passive sampler were investigated for the time-integrative detection and quantification of POCs in effluent. One configuration contained the polymeric reversed phase sorbent Strata-X (SX) and the other Strata-X suspended in agarose gel (SX-Gel). These were deployed for up to 29 days and analysed for forty-nine POCs including pesticides, pharmaceuticals and personal care products (PPCPs) together with illicit drugs. Complementary composite samples were collected on days 6, 12, 20 and 26 representing the previous 24 h. Thirty-eight contaminants were detected in composite samples and MPT extracts, with MPT sampling rates (Rs) for 11 pesticides and 9 PPCPs/drugs ranging from 0.81 to 10.32 mL d-1 in SX and 1.35-32.83 mL d-1 in SX-Gel. Half-times to equilibrium of contaminants with the SX and SX-Gel equipped samplers ranged from two days to >29 days. MPT (SX) samplers were also deployed at 10 wastewater treatment effluent discharge sites across Australia for 7 days (again with complementary composite samples), to validate the sampler performance under varying conditions. Extracts from these MPTs detected 48 contaminants in comparison with 46 in composite samples, with concentrations ranging from 0.1 to 138 ng mL-1. An advantage of the MPT was preconcentration of contaminants, resulting in extract levels often markedly above instrument analytical detection limits. The validation study demonstrated a high correlation between accumulated contaminant mass in the MPTs and wastewater concentrations from composite samples (r2 > 0.70, where concentrations in composite samples were > 3× LOD). The MPT sampler shows promise as a sensitive tool for detecting POCs at trace levels in wastewater effluent and also quantifying these levels if temporal concentration variations are not significant.

7.
Environ Sci Technol ; 55(19): 12922-12929, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34528434

RESUMO

Passive sampling approaches to monitor licit and illicit drugs of concern in wastewater shows promise as a supplementary sampling technique to grab sampling when conventional composite autosampling may not be possible. Recent studies have assessed the applicability of passive sampling at a single wastewater treatment plant (WWTP). However, it remains unknown whether a single-site calibration can be applied to other WWTPs. This study evaluated the in situ calibration of microporous polyethylene tube passive samplers (MPTs) against simultaneously collected composite samples for 22 different WWTPs. Samples were analyzed for methylamphetamine, amphetamine, hydroxycotinine, cotinine, benzoylecgonine, 3,4-methylenedioxymethamphetamine, and noroxycodone. Estimated rates of chemical uptake (sampling rates) were calculated using the mass accumulated in the samplers, the concentration measured in composite samples, and the duration of deployment. The estimated sampling rates were consistent between WWTPs (>90% within a factor of two) and ranged from 5 mL day-1 (amphetamine) to 9 mL day-1 (noroxycodone). The samplers were effective at estimating analyte concentrations, with 77% of results having a normalized difference to 24 h composite samples of below 30%. Our study suggests that MPT passive samplers provide a tool for the spatiotemporal monitoring of drug use where automated integrative sampling techniques may not be feasible.


Assuntos
Drogas Ilícitas , Poluentes Químicos da Água , Calibragem , Monitoramento Ambiental , Polietileno , Águas Residuárias/análise , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 55(11): 7418-7429, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34014086

RESUMO

The in-sample stability of selected pharmaceuticals, illicit drugs, and their metabolites in wastewater was assessed under six different conditions-untreated, addition of hydrochloric acid or sodium metabisulfite solution, combined with or without sterile filtration, and at four representative temperatures, at 35 °C for up to 28 days, 22 °C for 56 days, and 4 °C and -20 °C for 196 days, or freeze/thaw cycles for 24 weeks. Paracetamol, 6-monoacetylmorphine, morphine, and cocaine were poorly stable in untreated wastewater-e.g., with 50% transformation within 1.2-8.1 days at 22 °C, and acidification reduced their in-sample transformations. Acesulfame, carbamazepine, cotinine, methamphetamine, 3,4-methylenedioxy-methamphetamine (MDMA), ketamine, norfentanyl, 3,4-methylenedioxy-N-ethylamphetamine (MDEA), and norbuprenorphine were highly or moderately stable over the observed period, even in untreated wastewater. Fitting of pseudo-first-order kinetics and the Arrhenius equation was used to develop a multistage transformation estimation model combined with an interactive tool to evaluate possible transformation scenarios of selected biomarkers for the processes from sampling to preanalysis. However, as the wastewater composition can vary between sites and over time, the variability of in-sample stability requires further exploration.


Assuntos
Cocaína , Drogas Ilícitas , Metanfetamina , Poluentes Químicos da Água , Cocaína/análise , Detecção do Abuso de Substâncias , Águas Residuárias/análise , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 754: 142373, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254898

RESUMO

UV filters present in sunscreen and other cosmetics are directly released into the environment during aquatic recreational activities. The extent to which the wide range of UV filters pose a risk to the environment remains unclear. This study investigated the occurrence and dissipation of selected organic UV filters at a recreational site (Enoggera Reservoir, Queensland, Australia) over 12 h. Furthermore, different possible degradation processes were investigated in a controlled off-site experiment with surface water exposed to natural light. Half-lives were estimated for ten UV filters. In Enoggera Reservoir, seven UV filters were detected, of which the most prevalent were octocrylene, avobenzone (BMDBM) and enzacamene (4-MBC). Summed concentrations of the seven UV filters ranged from 7330 ng L-1 at 13:00 h to 2550 ng L-1 at 21:00 h. In the degradation experiment, four UV filters showed no significant change over time. The fate of these compounds in the environment is likely to be mainly influenced by dispersion. Half-lives of the remaining UV filters were 6.6 h for amiloxate (IMC), 20 h for benzophenone 1, 23 h for octinoxate (EHMC), 30 h for 3-benzylidene camphor, 34 h for 4-MBC and 140 h for dioxybenzone (BP8). The degree of susceptibility to photodegradation and biodegradation was generally consistent within a structural class. The fate and half-lives of UV filters are variable and should be considered on a per site basis when assessing environmental risk.

10.
Environ Res ; 193: 110531, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249042

RESUMO

We monitored the concentration of indicator viruses crAssphage and pepper mild mottle virus (PMMoV) and human pathogen adenovirus (HAdV) in influent from a wastewater treatment plant in Brisbane, Australia in 1-h and 24-h composite samples. Over three days of sampling, the mean concentration of crAssphage gene copies (GC)/mL in 24-h composite samples did not differ significantly (p = 0.72-0.92), while for PMMoV GC/mL (p value range: 0.0002-0.0321) and HAdV GC/mL (p value range: 0.0028-0.0068) significant differences in concentrations were observed on one day of sampling compared to the other two. For all three viruses, the variation observed in 1-h composite samples was greater than the variation observed in 24-h composite samples. For crAssphage, in 54.1% of 1-h composite samples, the concentration was less than that observed in 24-h composite samples; whereas for PMMoV and HAdV the concentration was less in 79.2 and 70.9% of 1-h composite samples, respectively, compared to the relevant 24-h composite samples. Similarly, the concentration of crAssphage in 1-h compared to 24-h composite samples did not differ (p = 0.1082) while the concentrations of PMMoV (p < 0.0001) and HAdV (p < 0.0001) in 1-h composite samples were significantly different from 24-h composite samples. These results suggest that 24-h composite samples offer increased analytical sensitivity and decreased variability compared to 1-h composite samples when monitoring wastewater, especially for pathogenic viruses with low infection rates within a community. Thus, for wastewater-based epidemiology applications, 24-h composite samples are less likely to produce false negative results and erroneous public health information.


Assuntos
Vírus , Águas Residuárias , Austrália , Fezes , Humanos , Vigilância Epidemiológica Baseada em Águas Residuárias
11.
Sci Total Environ ; 761: 144216, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33360129

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus which causes coronavirus disease (COVID-19), has spread rapidly across the globe infecting millions of people and causing significant health and economic impacts. Authorities are exploring complimentary approaches to monitor this infectious disease at the community level. Wastewater-based epidemiology (WBE) approaches to detect SARS-CoV-2 RNA in municipal wastewater are being implemented worldwide as an environmental surveillance approach to inform health authority decision-making. Owing to the extended excretion of SARS-CoV-2 RNA in stool, WBE can surveil large populated areas with a longer detection window providing unique information on the presence of pre-symptomatic and asymptomatic cases that are unlikely to be screened by clinical testing. Herein, we analysed SARS-CoV-2 RNA in 24-h composite wastewater samples (n = 63) from three wastewater treatment plants (WWTPs) in Brisbane, Queensland, Australia from 24th of February to 1st of May 2020. A total of 21 samples were positive for SARS-CoV-2, ranging from 135 to 11,992 gene copies (GC)/100 mL of wastewater. Detections were made in a Southern Brisbane WWTP in late February 2020, up to three weeks before the first clininal case was reported there. Wastewater samples were generally positive during the period with highest caseload data. The positive SARS-CoV-2 RNA detection in wastewater while there were limited clinical reported cases demonstrates the potential of WBE as an early warning system to identify hotspots and target localised public health responses, such as increased individual testing and the provision of health warnings.


Assuntos
COVID-19 , Coronavirus , Austrália , Humanos , Queensland , RNA , SARS-CoV-2 , Águas Residuárias
12.
Environ Res ; 191: 110092, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32861728

RESUMO

Wastewater-based epidemiology (WBE) demonstrates potential for COVID-19 community transmission monitoring; however, data on the stability of SARS-CoV-2 RNA in wastewater are needed to interpret WBE results. The decay rates of RNA from SARS-CoV-2 and a potential surrogate, murine hepatitis virus (MHV), were investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in untreated wastewater, autoclaved wastewater, and dechlorinated tap water stored at 4, 15, 25, and 37 °C. Temperature, followed by matrix type, most greatly influenced SARS-CoV-2 RNA first-order decay rates (k). The average T90 (time required for 1-log10 reduction) of SARS-CoV-2 RNA ranged from 8.04 to 27.8 days in untreated wastewater, 5.71 to 43.2 days in autoclaved wastewater, and 9.40 to 58.6 days in tap water. The average T90 for RNA of MHV at 4 to 37 °C ranged from 7.44 to 56.6 days in untreated wastewater, 5.58-43.1 days in autoclaved wastewater, and 10.9 to 43.9 days in tap water. There was no statistically significant difference between RNA decay of SARS-CoV-2 and MHV; thus, MHV is suggested as a suitable persistence surrogate. Decay rate constants for all temperatures were comparable across all matrices for both viral RNAs, except in untreated wastewater for SARS-CoV-2, which showed less sensitivity to elevated temperatures. Therefore, SARS-CoV-2 RNA is likely to persist long enough in untreated wastewater to permit reliable detection for WBE application.


Assuntos
Infecções por Coronavirus , Vírus da Hepatite Murina , Pandemias , Pneumonia Viral , Animais , Betacoronavirus , COVID-19 , Humanos , Camundongos , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
13.
Sci Total Environ ; 739: 139960, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758945

RESUMO

There is currently a clear benefit for many countries to utilize wastewater-based epidemiology (WBE) as part of ongoing measures to manage the coronavirus disease 2019 (COVID-19) global pandemic. Since most wastewater virus concentration methods were developed and validated for nonenveloped viruses, it is imperative to determine the efficiency of the most commonly used methods for the enveloped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Municipal wastewater seeded with a human coronavirus (CoV) surrogate, murine hepatitis virus (MHV), was used to test the efficiency of seven wastewater virus concentration methods: (A-C) adsorption-extraction with three different pre-treatment options, (D-E) centrifugal filter device methods with two different devices, (F) polyethylene glycol (PEG 8000) precipitation, and (G) ultracentrifugation. MHV was quantified by reverse-transcription quantitative polymerase chain reaction and the recovery efficiency was calculated for each method. The mean MHV recoveries ranged from 26.7 to 65.7%. The most efficient methods were adsorption-extraction methods with MgCl2 pre-treatment (Method C), and without pre-treatment (Method B). The third most efficient method used the Amicon® Ultra-15 centrifugal filter device (Method D) and its recovery efficiency was not statistically different from the most efficient methods. The methods with the worst recovery efficiency included the adsorption-extraction method with acidification (A), followed by PEG precipitation (F). Our results suggest that absorption-extraction methods with minimal or without pre-treatment can provide suitably rapid, cost-effective and relatively straightforward recovery of enveloped viruses in wastewater. The MHV is a promising process control for SARS-CoV-2 surveillance and can be used as a quality control measure to support community-level epidemic mitigation and risk assessment.


Assuntos
Infecções por Coronavirus , Vírus da Hepatite Murina , Pandemias , Pneumonia Viral , Vírus , Animais , Betacoronavirus , COVID-19 , Humanos , Camundongos , SARS-CoV-2 , Águas Residuárias
14.
J Travel Med ; 27(5)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32662867

RESUMO

BACKGROUND: Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries around the world are developing strategies to minimize SARS-CoV-2 transmission associated with resuming activity. This study investigated the possible use of SARS-CoV-2 RNA wastewater surveillance from airline and cruise ship sanitation systems and its potential use as a COVID-19 public health management tool. METHODS: Aircraft and cruise ship wastewater samples (n = 21) were tested for SARS-CoV-2 using two virus concentration methods, adsorption-extraction by electronegative membrane (n = 13) and ultrafiltration by Amicon (n = 8), and five assays using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and RT-droplet digital PCR (RT-ddPCR). Representative qPCR amplicons from positive samples were sequenced to confirm assay specificity. RESULTS: SARS-CoV-2 RNA was detected in samples from both aircraft and cruise ship wastewater; however concentrations were near the assay limit of detection. The analysis of multiple replicate samples and use of multiple RT-qPCR and/or RT-ddPCR assays increased detection sensitivity and minimized false-negative results. Representative qPCR amplicons were confirmed for the correct PCR product by sequencing. However, differences in sensitivity were observed among molecular assays and concentration methods. CONCLUSIONS: The study indicates that surveillance of wastewater from large transport vessels with their own sanitation systems has potential as a complementary data source to prioritize clinical testing and contact tracing among disembarking passengers. Importantly, sampling methods and molecular assays must be further optimized to maximize detection sensitivity. The potential for false negatives by both wastewater testing and clinical swab testing suggests that the two strategies could be employed together to maximize the probability of detecting SARS-CoV-2 infections amongst passengers.


Assuntos
Aeronaves , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus , Pandemias , Pneumonia Viral , RNA Viral/isolamento & purificação , Navios , Águas Residuárias/virologia , COVID-19 , Humanos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Sensibilidade e Especificidade , Viagem
15.
Sci Total Environ ; 728: 138764, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387778

RESUMO

Infection with SARS-CoV-2, the etiologic agent of the ongoing COVID-19 pandemic, is accompanied by the shedding of the virus in stool. Therefore, the quantification of SARS-CoV-2 in wastewater affords the ability to monitor the prevalence of infections among the population via wastewater-based epidemiology (WBE). In the current work, SARS-CoV-2 RNA was concentrated from wastewater in a catchment in Australia and viral RNA copies were enumerated using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) resulting in two positive detections within a six day period from the same wastewater treatment plant (WWTP). The estimated viral RNA copy numbers observed in the wastewater were then used to estimate the number of infected individuals in the catchment via Monte Carlo simulation. Given the uncertainty and variation in the input parameters, the model estimated a median range of 171 to 1,090 infected persons in the catchment, which is in reasonable agreement with clinical observations. This work highlights the viability of WBE for monitoring infectious diseases, such as COVID-19, in communities. The work also draws attention to the need for further methodological and molecular assay validation for enveloped viruses in wastewater.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Águas Residuárias/virologia , COVID-19 , Monitoramento Epidemiológico , Humanos , Método de Monte Carlo , Pandemias , Queensland/epidemiologia , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2
16.
Chemosphere ; 247: 125887, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31978656

RESUMO

Studies conducted globally have identified wastewater effluent as a key source of UV filters released into the aquatic environment. We assessed the annual release of UV filters from wastewater treatment plant effluent in Australia and evaluated the removal of these chemicals during wastewater treatment. Effluent samples were collected from 33 sites alongside matching influent samples. Sample collection predominately occurred during the Australian Census in August 2016, which allowed for accurate per capita normalisation of the results. A subset of sites was also sampled over the Southern Hemisphere summer (December-February) period. Five UV filters were detected with at least one detected in 95% of effluent samples. The summed concentration of UV filters ranged from 130 ng L-1 to 8400 ng L-1 and averaged 2800 (±1900) ng L-1. Of the target UV filters, 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and benzophenone 4 (BP4) showed the lowest removal efficiencies (11 ± 36% and 51 ± 43%, respectively) across all sites and were the most abundant in effluent. Average estimated removal efficiencies of the other compounds were between 59 (±24) % (4-methylbenzylidene camphor (4-MBC)) and 74 (±22) % (benzophenone 1 (BP1)). We did not find a trend in seasonal differences in the per capita release of UV filters in effluent samples. We estimate that approximately 40% of UV filter loads measured in influent are breaking through to the effluent resulting in the release of approximately 20 kg day-1 of the selected UV filters into the aquatic environment from treated wastewater effluent in Australia.


Assuntos
Monitoramento Ambiental , Protetores Solares/análise , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Austrália , Benzofenonas , Cânfora/análogos & derivados , Estações do Ano , Protetores Solares/química , Águas Residuárias/química
17.
Chemosphere ; 223: 731-737, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30807940

RESUMO

In recent years, organic ultraviolet filters (UVFs) received considerable attention as a group of emerging contaminants, including in Australia where the use of UVFs is particularly relevant. Passive sampling using polymers has become widely used for routine monitoring of chemicals in the aquatic environment. Application of passive samplers for monitoring chemicals in the water relies on calibration data such as chemical's polymer-water partition coefficient (Kpw) and diffusion coefficients in the sampling material (Dp), for understanding uptake and kinetic limitations. In the present study, Kpw and Dp for nine UVFs were estimated. Kpw values were determined in different water - polymer partition experiments where (1) a given mass of chemicals was dosed into the water and (2) into the polymer. Diffusion coefficients were determined using the stacking method. The estimated log Kpw and log Dp ranged from 2.9 to 6.4 L kg-1 and -11.1 to -10.5 m2s-1, respectively. The sufficient high Dp allows application of kinetic models that only consider water boundary-controlled uptake for converting silicone sampler uptake into an aqueous phase concentration using the presented Kpw.


Assuntos
Calibragem , Monitoramento Ambiental/métodos , Silicones , Poluentes Químicos da Água/análise , Austrália , Filtração , Compostos Orgânicos/efeitos adversos , Polímeros/química , Raios Ultravioleta , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA