Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38902023

RESUMO

Formation and retrieval of remote contextual memory depends on cortical engram neurons that are defined during learning. Manipulation of astrocytic Gq and Gi associated G-protein coupled receptor (GPCR) signaling has been shown to affect memory processing, but little is known about the role of cortical astrocytic Gs-GPCR signaling in remote memory acquisition and the functioning of cortical engram neurons. We assessed this by chemogenetic manipulation of astrocytes in the medial prefrontal cortex (mPFC) of male mice, during either encoding or consolidation of a contextual fear memory, while simultaneously labeling cortical engram neurons. We found that stimulation of astrocytic Gs signaling during memory encoding and consolidation did not alter remote memory expression. In line with this, the size of the mPFC engram population and the recall-induced reactivation of these neurons was unaffected. Hence, our data indicate that activation of Gs-GPCR signaling in cortical astrocytes is not sufficient to alter memory performance and functioning of cortical engram neurons.


Assuntos
Astrócitos , Medo , Neurônios , Córtex Pré-Frontal , Transdução de Sinais , Animais , Astrócitos/metabolismo , Masculino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Transdução de Sinais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Medo/fisiologia , Camundongos Endogâmicos C57BL , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Camundongos , Memória/fisiologia , Memória de Longo Prazo/fisiologia
2.
J Neurosci Res ; 102(3): e25295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515329

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia, characterized by deposition of extracellular amyloid-beta (Aß) aggregates and intraneuronal hyperphosphorylated Tau. Many AD risk genes, identified in genome-wide association studies (GWAS), are expressed in microglia, the innate immune cells of the central nervous system. Specific subtypes of microglia emerged in relation to AD pathology, such as disease-associated microglia (DAMs), which increased in number with age in amyloid mouse models and in human AD cases. However, the initial transcriptional changes in these microglia in response to amyloid are still unknown. Here, to determine early changes in microglia gene expression, hippocampal microglia from male APPswe/PS1dE9 (APP/PS1) mice and wild-type littermates were isolated and analyzed by RNA sequencing (RNA-seq). By bulk RNA-seq, transcriptomic changes were detected in hippocampal microglia from 6-months-old APP/PS1 mice. By performing single-cell RNA-seq of CD11c-positive and negative microglia from 6-months-old APP/PS1 mice and analysis of the transcriptional trajectory from homeostatic to CD11c-positive microglia, we identified a set of genes that potentially reflect the initial response of microglia to Aß.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Humanos , Lactente , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Camundongos Transgênicos , Microglia/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Placa Amiloide , Presenilina-1/genética , Transcriptoma
3.
Alzheimers Dement ; 20(3): 1637-1655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38055782

RESUMO

INTRODUCTION: Early-life stress (ES) increases the risk for Alzheimer's disease (AD). We and others have shown that ES aggravates amyloid-beta (Aß) pathology and promotes cognitive dysfunction in APP/PS1 mice, but underlying mechanisms remain unclear. METHODS: We studied how ES affects the hippocampal synaptic proteome in wild-type (WT) and APP/PS1 mice at early and late pathological stages, and validated hits using electron microscopy and immunofluorescence. RESULTS: The hippocampal synaptosomes of both ES-exposed WT and early-stage APP/PS1 mice showed a relative decrease in actin dynamics-related proteins and a relative increase in mitochondrial proteins. ES had minimal effects on older WT mice, while strongly affecting the synaptic proteome of advanced stage APP/PS1 mice, particularly the expression of astrocytic and mitochondrial proteins. DISCUSSION: Our data show that ES and amyloidosis share pathogenic pathways involving synaptic mitochondrial dysfunction and lipid metabolism, which may underlie the observed impact of ES on the trajectory of AD.


Assuntos
Experiências Adversas da Infância , Doença de Alzheimer , Amiloidose , Camundongos , Animais , Metabolismo dos Lipídeos , Camundongos Transgênicos , Proteoma , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Mitocôndrias , Proteínas Mitocondriais , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/metabolismo
4.
Front Cell Neurosci ; 17: 1159756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051110

RESUMO

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have proven themselves as one of the key in vivo techniques of modern neuroscience, allowing for unprecedented access to cellular manipulations in living animals. With respect to astrocyte research, DREADDs have become a popular method to examine the functional aspects of astrocyte activity, particularly G-protein coupled receptor (GPCR)-mediated intracellular calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) dynamics. With this method it has become possible to directly link the physiological aspects of astrocytic function to cognitive processes such as memory. As a result, a multitude of studies have explored the impact of DREADD activation in astrocytes on synaptic activity and memory. However, the emergence of varying results prompts us to reconsider the degree to which DREADDs expressed in astrocytes accurately mimic endogenous GPCR activity. Here we compare the major downstream signaling mechanisms, synaptic, and behavioral effects of stimulating Gq-, Gs-, and Gi-DREADDs in hippocampal astrocytes of adult mice to those of endogenously expressed GPCRs.

5.
Glia ; 71(7): 1770-1785, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37002718

RESUMO

Loss of function of the astrocyte membrane protein MLC1 is the primary genetic cause of the rare white matter disease Megalencephalic Leukoencephalopathy with subcortical Cysts (MLC), which is characterized by disrupted brain ion and water homeostasis. MLC1 is prominently present around fluid barriers in the brain, such as in astrocyte endfeet contacting blood vessels and in processes contacting the meninges. Whether the protein plays a role in other astrocyte domains is unknown. Here, we show that MLC1 is present in distal astrocyte processes, also known as perisynaptic astrocyte processes (PAPs) or astrocyte leaflets, which closely interact with excitatory synapses in the CA1 region of the hippocampus. We find that the PAP tip extending toward excitatory synapses is shortened in Mlc1-null mice. This affects glutamatergic synaptic transmission, resulting in a reduced rate of spontaneous release events and slower glutamate re-uptake under challenging conditions. Moreover, while PAPs in wildtype mice retract from the synapse upon fear conditioning, we reveal that this structural plasticity is disturbed in Mlc1-null mice, where PAPs are already shorter. Finally, Mlc1-null mice show reduced contextual fear memory. In conclusion, our study uncovers an unexpected role for the astrocyte protein MLC1 in regulating the structure of PAPs. Loss of MLC1 alters excitatory synaptic transmission, prevents normal PAP remodeling induced by fear conditioning and disrupts contextual fear memory expression. Thus, MLC1 is a new player in the regulation of astrocyte-synapse interactions.


Assuntos
Astrócitos , Proteínas de Membrana , Sinapses , Animais , Camundongos , Astrócitos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Sinapses/metabolismo
6.
Front Cell Neurosci ; 17: 1085690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36779013

RESUMO

Introduction: Astrocyte-synapse bi-directional communication is required for neuronal development and synaptic plasticity. Astrocytes structurally interact with synapses using their distal processes also known as leaflets or perisynaptic astrocytic processes (PAPs). We recently showed that these PAPs are retracted from hippocampal synapses, and involved in the consolidation of fear memory. However, whether astrocytic synaptic coverage is affected when memory is impaired is unknown. Methods: Here, we describe in detail an electron microscopy method that makes use of a large number of 2D images to investigate structural astrocyte-synapse interaction in paraformaldehyde fixed brain tissue of mice. Results and discussion: We show that fear memory-induced synaptic activation reduces the interaction between the PAPs and the presynapse, but not the postsynapse, accompanied by retraction of the PAP tip from the synaptic cleft. Interestingly, this retraction is absent in the APP/PS1 mouse model of Alzheimer's disease, supporting the concept that alterations in astrocyte-synapse coverage contribute to memory processing.

7.
Biol Psychiatry ; 94(3): 226-238, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702661

RESUMO

BACKGROUND: The formation and retrieval of fear memories depends on orchestrated synaptic activity of neuronal ensembles within the hippocampus, and it is becoming increasingly evident that astrocytes residing in the environment of these synapses play a central role in shaping cellular memory representations. Astrocyte distal processes, known as leaflets, fine-tune synaptic activity by clearing neurotransmitters and limiting glutamate diffusion. However, how astroglial synaptic coverage contributes to mnemonic processing of fearful experiences remains largely unknown. METHODS: We used electron microscopy to observe changes in astroglial coverage of hippocampal synapses during consolidation of fear memory in mice. To manipulate astroglial synaptic coverage, we depleted ezrin, an integral leaflet-structural protein, from hippocampal astrocytes using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing. Next, a combination of Föster resonance energy transfer analysis, genetically encoded glutamate sensors, and whole-cell patch-clamp recordings was used to determine whether the proximity of astrocyte leaflets to the synapse is critical for synaptic integrity and function. RESULTS: We found that consolidation of a recent fear memory is accompanied by a transient retraction of astrocyte leaflets from hippocampal synapses and increased activation of NMDA receptors. Accordingly, astrocyte-specific depletion of ezrin resulted in shorter astrocyte leaflets and reduced astrocyte contact with the synaptic cleft, which consequently boosted extrasynaptic glutamate diffusion and NMDA receptor activation. Importantly, after fear conditioning, these cellular phenotypes translated to increased retrieval-evoked activation of CA1 pyramidal neurons and enhanced fear memory expression. CONCLUSIONS: Together, our data show that withdrawal of astrocyte leaflets from the synaptic cleft is an experience-induced, temporally regulated process that gates the strength of fear memories.

8.
Brain Behav Immun ; 107: 225-241, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270437

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aß) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aß42 levels, and occurred well before the presence of Aß plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aß levels or Aß plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Transtornos da Memória/prevenção & controle
9.
Cell Rep ; 41(3): 111474, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261025

RESUMO

Within eukaryotic cells, translation is regulated independent of transcription, enabling nuanced, localized, and rapid responses to stimuli. Neurons respond transcriptionally and translationally to synaptic activity. Although transcriptional responses are documented in astrocytes, here we test whether astrocytes have programmed translational responses. We show that seizure activity rapidly changes the transcripts on astrocyte ribosomes, some predicted to be downstream of BDNF signaling. In acute slices, we quantify the extent to which cues of neuronal activity activate translation in astrocytes and show that this translational response requires the presence of neurons, indicating that the response is non-cell autonomous. We also show that this induction of new translation extends into the periphery of astrocytes. Finally, synaptic proteomics show that new translation is required for changes that occur in perisynaptic astrocyte protein composition after fear conditioning. Regulation of translation in astrocytes by neuronal activity suggests an additional mechanism by which astrocytes may dynamically modulate nervous system functioning.


Assuntos
Astrócitos , Proteoma , Fator Neurotrófico Derivado do Encéfalo , Estruturas da Membrana Celular , Proteômica
10.
Cells ; 11(9)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563732

RESUMO

Astrocytes are specialized glial cells that tile the central nervous system (CNS) and perform numerous essential functions. Astrocytes react to various forms of CNS insults by altering their morphology and molecular profile, through a process known as reactive astrogliosis. Accordingly, astrocyte reactivity is apparent in many neurodegenerative diseases, among which one is Alzheimer's disease (AD). Recent clinical trials on early-stage AD have demonstrated that Fortasyn Connect (FC), a multi-nutrient combination providing specific precursors and cofactors for phospholipid synthesis, helps to maintain neuronal functional connectivity and cognitive performance of patients. Several studies have shown that FC may act through its effects on neuronal survival and synaptogenesis, leading to reduced astrocyte reactivity, but whether FC can directly counteract astrocyte reactivity remains to be elucidated. Hence, we developed an in vitro model of reactive astrogliosis using the pro-inflammatory cytokines TNF-α and IFN-γ together with an automated high-throughput assay (AstroScan) to quantify molecular and morphological changes that accompany reactive astrogliosis. Next, we showed that FC is potent in preventing cytokine-induced reactive astrogliosis, a finding that might be of high relevance to understand the beneficial effects of FC-based interventions in the context of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Gliose , Astrócitos , Citocinas/farmacologia , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Humanos , Inflamação , Neurônios , Nutrientes , Fosfolipídeos
11.
Cells ; 9(9)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961889

RESUMO

Myelination greatly increases the speed of action potential propagation of neurons, thereby enhancing the efficacy of inter-neuronal communication and hence, potentially, optimizing the brain's signal processing capability. The impact of genetic variation on the extent of axonal myelination and its consequences for brain functioning remain to be determined. Here we investigated this question using a genetic reference panel (GRP) of mouse BXD recombinant inbred (RI) strains, which partly model genetic diversity as observed in human populations, and which show substantial genetic differences in a variety of behaviors, including learning, memory and anxiety. We found coherent differences in the expression of myelin genes in brain tissue of RI strains of the BXD panel, with the largest differences in the hippocampus. The parental C57BL/6J (C57) and DBA/2J (DBA) strains were on opposite ends of the expression spectrum, with C57 showing higher myelin transcript expression compared with DBA. Our experiments showed accompanying differences between C57 and DBA in myelin protein composition, total myelin content, and white matter conduction velocity. Finally, the hippocampal myelin gene expression of the BXD strains correlated significantly with behavioral traits involving anxiety and/or activity. Taken together, our data indicate that genetic variation in myelin gene expression translates to differences observed in myelination, axonal conduction speed, and possibly in anxiety/activity related behaviors.


Assuntos
Ansiedade/genética , Variação Genética , Hipocampo/metabolismo , Bainha de Mielina/genética , Neurônios/metabolismo , Transcriptoma , Animais , Ansiedade/metabolismo , Biomarcadores/metabolismo , Comportamento de Escolha/fisiologia , Cognição/fisiologia , Cruzamentos Genéticos , Feminino , Regulação da Expressão Gênica , Locomoção/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Bainha de Mielina/metabolismo , Neurônios/citologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Especificidade da Espécie , Substância Branca/metabolismo
12.
Curr Protoc Neurosci ; 91(1): e91, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32068967

RESUMO

Astrocytes are morphologically complex cells with numerous close contacts with neurons at the level of their somata, branches, and branchlets. The smallest astrocyte processes make discrete contacts with synapses at scales that cannot be observed by standard light microscopy. At such contact points, astrocytes are thought to perform both homeostatic and neuromodulatory roles-functions that are proposed to be determined by their close spatial apposition. To study such spatial interactions, we previously developed a Förster resonance energy transfer (FRET)-based approach, which enables observation and tracking of the static and dynamic proximity of astrocyte processes with synapses. The approach is compatible with standard imaging techniques such as confocal microscopy and permits assessment of the most proximate contacts between astrocytes and neurons in live tissues. In this protocol article we describe the approach to analyze the contacts between striatal astrocyte processes and corticostriatal neuronal projection terminals onto medium spiny neurons. We report the required protocols in detail, including adeno-associated virus microinjections, acute brain slice preparation, imaging, and post hoc FRET quantification. The article provides a detailed description that can be used to characterize and study astrocyte process proximity to synapses in living tissue. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Förster resonance energy transfer imaging in cultured cells Basic Protocol 2: Förster resonance energy transfer imaging with the neuron-astrocyte proximity assay in acute brain slices.


Assuntos
Astrócitos/citologia , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia Confocal/métodos , Neurônios/citologia , Animais , Encéfalo/citologia , Comunicação Celular , Células Cultivadas , Dependovirus/genética , Feminino , Vetores Genéticos , Células HEK293 , Humanos , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções
13.
Cell Rep ; 24(5): 1203-1217.e6, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30067976

RESUMO

Microglia are brain-resident macrophages with trophic and phagocytic functions. Dominant loss-of-function mutations in a key microglia regulator, colony-stimulating factor 1 receptor (CSF1R), cause adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a progressive white matter disorder. Because it remains unclear precisely how CSF1R mutations affect microglia, we generated an allelic series of csf1r mutants in zebrafish to identify csf1r-dependent microglia changes. We found that csf1r mutations led to aberrant microglia density and distribution and regional loss of microglia. The remaining microglia still had a microglia-specific gene expression signature, indicating that they had differentiated normally. Strikingly, we also observed lower microglia numbers and widespread microglia depletion in postmortem brain tissue of ALSP patients. Both in zebrafish and in human disease, local microglia loss also presented in regions without obvious pathology. Together, this implies that CSF1R mainly regulates microglia density and that early loss of microglia may contribute to ALSP pathogenesis.


Assuntos
Diferenciação Celular , Leucoencefalopatias/metabolismo , Microglia/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Humanos , Leucoencefalopatias/patologia , Microglia/citologia , Mutação , Proteínas Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
14.
Front Neurosci ; 11: 440, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824363

RESUMO

Neuronal and synaptic membranes are composed of a phospholipid bilayer. Supplementation with dietary precursors for phospholipid synthesis -docosahexaenoic acid (DHA), uridine and choline- has been shown to increase neurite outgrowth and synaptogenesis both in vivo and in vitro. A role for multi-nutrient intervention with specific precursors and cofactors has recently emerged in early Alzheimer's disease, which is characterized by decreased synapse numbers in the hippocampus. Moreover, the medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect (FC), improves memory performance in early Alzheimer's disease patients, possibly via maintaining brain connectivity. This suggests an effect of FC on synapses, but the underlying cellular mechanism is not fully understood. Therefore, we investigated the effect of FC (consisting of DHA, eicosapentaenoic acid (EPA), uridine, choline, phospholipids, folic acid, vitamins B12, B6, C and E, and selenium), on synaptogenesis by supplementing it to primary neuron-astrocyte co-cultures, a cellular model that mimics metabolic dependencies in the brain. We measured neuronal developmental processes using high content screening in an automated manner, including neuronal survival, neurite morphology, as well as the formation and maturation of synapses. Here, we show that FC supplementation resulted in increased numbers of neurons without affecting astrocyte number. Furthermore, FC increased postsynaptic PSD95 levels in both immature and mature synapses. These findings suggest that supplementation with FC to neuron-astrocyte co-cultures increased both neuronal survival and the maturation of postsynaptic terminals, which might aid the functional interpretation of FC-based intervention strategies in neurological diseases characterized by neuronal loss and impaired synaptic functioning.

15.
PLoS Biol ; 15(5): e1002605, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28549068

RESUMO

In the vertebrate nervous system, myelination of axons for rapid impulse propagation requires the synthesis of large amounts of lipids and proteins by oligodendrocytes and Schwann cells. Myelin membranes are thought to be cell-autonomously assembled by these axon-associated glial cells. Here, we report the surprising finding that in normal brain development, a substantial fraction of the lipids incorporated into central nervous system (CNS) myelin are contributed by astrocytes. The oligodendrocyte-specific inactivation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP), an essential coactivator of the transcription factor SREBP and thus of lipid biosynthesis, resulted in significantly retarded CNS myelination; however, myelin appeared normal at 3 months of age. Importantly, embryonic deletion of the same gene in astrocytes, or in astrocytes and oligodendrocytes, caused a persistent hypomyelination, as did deletion from astrocytes during postnatal development. Moreover, when astroglial lipid synthesis was inhibited, oligodendrocytes began incorporating circulating lipids into myelin membranes. Indeed, a lipid-enriched diet was sufficient to rescue hypomyelination in these conditional mouse mutants. We conclude that lipid synthesis by oligodendrocytes is heavily supplemented by astrocytes in vivo and that horizontal lipid flux is a major feature of normal brain development and myelination.


Assuntos
Astrócitos/metabolismo , Doenças Desmielinizantes/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Astrócitos/patologia , Astrócitos/ultraestrutura , Biomarcadores/metabolismo , Cruzamentos Genéticos , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/prevenção & controle , Dieta Hiperlipídica , Ácido Graxo Sintase Tipo I/metabolismo , Deleção de Genes , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mutação , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/patologia , Oligodendroglia/ultraestrutura , Especificidade de Órgãos , Processamento de Proteína Pós-Traducional , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
16.
Glia ; 65(4): 670-682, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28168742

RESUMO

The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this assumption has been obtained in cell cultures, but whether astrocyte-derived lipids support synapses in vivo is not known. Here, we address this issue and determined the role of astrocyte lipid metabolism in hippocampal synapse formation and function in vivo. Hippocampal protein expression for the sterol regulatory element-binding protein (SREBP) and its target gene fatty acid synthase (Fasn) was found in astrocytes but not in neurons. Diminishing SREBP activity in astrocytes using mice in which the SREBP cleavage-activating protein (SCAP) was deleted from GFAP-expressing cells resulted in decreased cholesterol and phospholipid secretion by astrocytes. Interestingly, SCAP mutant mice showed more immature synapses, lower presynaptic protein SNAP-25 levels as well as reduced numbers of synaptic vesicles, indicating impaired development of the presynaptic terminal. Accordingly, hippocampal short-term and long-term synaptic plasticity were defective in mutant mice. These findings establish a critical role for astrocyte lipid metabolism in presynaptic terminal development and function in vivo. GLIA 2017;65:670-682.


Assuntos
Astrócitos/metabolismo , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica/genética , Metabolismo dos Lipídeos/fisiologia , Sinapses/fisiologia , Animais , Astrócitos/ultraestrutura , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/ultraestrutura , Coloração pela Prata , Sinapses/ultraestrutura , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
17.
Eur J Hum Genet ; 24(3): 381-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26014434

RESUMO

Disruptions in white matter (WM) tract structures have been implicated consistently in the pathophysiology of schizophrenia. Global WM integrity--as measured by fractional anisotropy (FA)--is highly heritable and may provide a good endophenotype for genetic studies of schizophrenia. WM abnormalities in schizophrenia are not localized to one specific brain region but instead reflect global low-level decreases in FA coupled with focal abnormalities. In this study, we sought to investigate whether functional gene sets associated with schizophrenia are also associated with WM integrity. We analyzed FA and genetic data from the Mind Research Network Clinical Imaging Consortium to study the effect of multiple oligodendrocyte gene sets on schizophrenia and WM integrity using a functional gene set analysis in 77 subjects with schizophrenia and 104 healthy controls. We found that a gene set involved in myelination was significantly associated with schizophrenia and FA. This gene set includes 17 genes that are expressed in oligodendrocytes and one neuronal gene (NRG1) that is known to regulate myelination. None of the genes within the gene set were associated with schizophrenia or FA individually, suggesting that no single gene was driving the association of the gene set. Our findings support the hypothesis that multiple genetic variants in myelination-related genes contribute to the observed correlation between schizophrenia and decreased WM integrity as measured by FA.


Assuntos
Bainha de Mielina/genética , Bainha de Mielina/patologia , Esquizofrenia/genética , Substância Branca/patologia , Adulto , Anisotropia , Feminino , Estudos de Associação Genética , Humanos , Masculino , Oligodendroglia/patologia , Polimorfismo de Nucleotídeo Único/genética
18.
Eur J Hum Genet ; 23(11): 1519-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25735483

RESUMO

Tourette syndrome is a heritable neurodevelopmental disorder whose pathophysiology remains unknown. Recent genome-wide association studies suggest that it is a polygenic disorder influenced by many genes of small effect. We tested whether these genes cluster in cellular function by applying gene-set analysis using expert curated sets of brain-expressed genes in the current largest available Tourette syndrome genome-wide association data set, involving 1285 cases and 4964 controls. The gene sets included specific synaptic, astrocytic, oligodendrocyte and microglial functions. We report association of Tourette syndrome with a set of genes involved in astrocyte function, specifically in astrocyte carbohydrate metabolism. This association is driven primarily by a subset of 33 genes involved in glycolysis and glutamate metabolism through which astrocytes support synaptic function. Our results indicate for the first time that the process of astrocyte-neuron metabolic coupling may be an important contributor to Tourette syndrome pathogenesis.


Assuntos
Astrócitos/patologia , Predisposição Genética para Doença , Microglia/patologia , Síndrome de Tourette/genética , Astrócitos/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Ácido Glutâmico , Humanos , Microglia/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Síndrome de Tourette/metabolismo , Síndrome de Tourette/fisiopatologia
19.
Hippocampus ; 25(11): 1250-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25708624

RESUMO

A change in efficacy of hippocampal synapses is critical for memory formation. So far, the molecular analysis of synapses during learning has focused on small groups of proteins, whereas the dynamic global changes at these synapses have remained unknown. Here, we analyzed the temporal changes of the mouse hippocampal synaptic membrane proteome 1 and 4 h after contextual fear learning, comparing two groups; (1) a fear memory forming "delayed-shock" group and (2) a fear memory-deficient "immediate-shock" group. No changes in protein expression were observed 1 h after conditioning between the two experimental groups. However, 423 proteins were significantly regulated 4 h later of which 164 proteins showed a temporal regulation after a delayed shock and 273 proteins after the stress of an immediate shock. From the proteins that were differentially regulated between the delayed- and the immediate-shock groups at 4 h, 48 proteins, most prominently representing endocytosis, (amphiphysin, dynamin, and synaptojanin1), glutamate signaling (glutamate [NMDA] receptor subunit epsilon-1, disks large homolog 3), and neurotransmitter metabolism (excitatory amino acid transporter 1, excitatory amino acid transporter 2, sodium- and chloride-dependent GABA transporter 3) were regulated in both protocols, but in opposite directions, pointing toward an interaction of learning and stress. Taken together, this data set yields novel insight into diverse and dynamic changes that take place at hippocampal synapses over the time course of contextual fear-memory learning.


Assuntos
Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Hipocampo/metabolismo , Proteoma/metabolismo , Estresse Psicológico/metabolismo , Membranas Sinápticas/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
20.
Cell Rep ; 9(2): 646-60, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25310982

RESUMO

Myelin formation during peripheral nervous system (PNS) development, and reformation after injury and in disease, requires multiple intrinsic and extrinsic signals. Akt/mTOR signaling has emerged as a major player involved, but the molecular mechanisms and downstream effectors are virtually unknown. Here, we have used Schwann-cell-specific conditional gene ablation of raptor and rictor, which encode essential components of the mTOR complexes 1 (mTORC1) and 2 (mTORC2), respectively, to demonstrate that mTORC1 controls PNS myelination during development. In this process, mTORC1 regulates lipid biosynthesis via sterol regulatory element-binding proteins (SREBPs). This course of action is mediated by the nuclear receptor RXRγ, which transcriptionally regulates SREBP1c downstream of mTORC1. Absence of mTORC1 causes delayed myelination initiation as well as hypomyelination, together with abnormal lipid composition and decreased nerve conduction velocity. Thus, we have identified the mTORC1-RXRγ-SREBP axis controlling lipid biosynthesis as a major contributor to proper peripheral nerve function.


Assuntos
Complexos Multiproteicos/metabolismo , Bainha de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Receptor X Retinoide gama/metabolismo , Células de Schwann/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Lipídeos/biossíntese , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/fisiologia , Proteína Regulatória Associada a mTOR , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Serina-Treonina Quinases TOR/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA