Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 142: 73-84, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101581

RESUMO

Soft tissue reconstruction currently relies on two main approaches, one involving the implantation of external biomaterials and the second one exploiting surgical autologous tissue displacement. While both methods have different advantages and disadvantages, successful long-term solutions for soft tissue repair are still limited. Specifically, volume retention over time and local tissue regeneration are the main challenges in the field. In this study the performance of a recently developed elastic porous injectable (EPI) biomaterial based on crosslinked carboxymethylcellulose is analyzed. Nearly quantitative volumetric stability, with over 90% volume retention at 6 months, is observed, and the pore space of the material is effectively colonized with autologous fibrovascular tissue. A comparative analysis with hyaluronic acid and collagen-based clinical reference materials is also performed. Mechanical stability, evidenced by a low-strain elastic storage modulus (G') approaching 1kPa and a yield strain of several tens of percent, is required for volume retention in-vivo. Macroporosity, along with in-vivo persistence of at least several months, is instead needed for successful host tissue colonization. This study demonstrates the importance of understanding material design criteria and defines the biomaterial requirements for volume retention and tissue colonization in soft tissue regeneration. STATEMENT OF SIGNIFICANCE: We present the design of an elastic, porous, injectable (EPI) scaffold suspension capable of inducing a precisely defined, stable volume of autologous connective tissue in situ. It combines volume stability and vascularized tissue induction capacity known from bulk scaffolds with the ease of injection in shear yielding materials. By comparative study with a series of clinically established biomaterials including a wound healing matrix and dermal fillers, we establish design rules regarding rheological and compressive mechanical properties as well as degradation characteristics that rationally underpin the volume stability and tissue induction in a high-performance biomaterial. These design rules should allow to streamline the development of new colonizable injectables.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Materiais Biocompatíveis/farmacologia , Colágeno , Porosidade , Cicatrização
2.
Adv Mater ; 33(41): e2102350, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34449109

RESUMO

A novel type of injectable biomaterial with an elastic softening transition is described. The material enables in vivo shaping, followed by induction of 3D stable vascularized tissue. The synthesis of the injectable meta-biomaterial is instructed by extensive numerical simulation as a suspension of irregularly fragmented, highly porous sponge-like microgels. The irregular particle shape dramatically enhances yield strain for in vivo stability against deformation. Porosity of the particles, along with friction between internal surfaces, provides the elastic softening transition. This emergent metamaterial property enables the material to reversibly change stiffness during deformation, allowing native tissue properties to be matched over a wide range of deformation amplitudes. After subcutaneous injection in mice, predetermined shapes can be sculpted manually. The 3D shape is maintained during excellent host tissue integration, with induction of vascular connective tissue that persists to the end of one-year follow-up. The geometrical design is compatible with many hydrogel materials, including cell-adhesion motives for cell transplantation. The injectable meta-biomaterial therefore provides new perspectives in soft tissue engineering and regenerative medicine.


Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual , Animais , Materiais Biocompatíveis/metabolismo , Adesão Celular , Módulo de Elasticidade , Feminino , Hidrogéis/química , Teste de Materiais , Camundongos , Porosidade , Medicina Regenerativa
3.
Macromol Mater Eng ; 304(4)2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31929732

RESUMO

Islet transplantation within mechanically stable microcapsules offers the promise of long-term diabetes reversal without chronic immunosuppression. Reinforcing the ionically gelled network of alginate (ALG) hydrogels with covalently linked polyethylene glycol (PEG) may create hybrid structures with desirable mechanical properties. This report describes the fabrication of hybrid PEG-ALG interpenetrating polymer networks and the investigation of microcapsule swelling, surface modulus, rheology, compression, and permeability. It is demonstrated that hybrid networks are more resistant to bulk swelling and compressive deformation and display improved shape recovery and long-term resilience. Interestingly, it is shown that PEG-ALG networks behave like ALG during microscale surface deformation and small amplitude shear while exhibiting similar permeability properties. The results from this report's in vitro characterization are interpreted according to viscoelastic polymer theory and provide new insight into hybrid hydrogel mechanical behavior. This new understanding of PEG-ALG mechanical performance is then linked to previous work that demonstrated the success of hybrid polymer immunoisolation devices in vivo.

4.
Transplantation ; 101(5): 1025-1035, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27525644

RESUMO

BACKGROUND: Understanding the effects of capsule composition and transplantation site on graft outcomes of encapsulated islets will aid in the development of more effective strategies for islet transplantation without immunosuppression. METHODS: Here, we evaluated the effects of transplanting alginate (ALG)-based microcapsules (Micro) in the confined and well-vascularized epididymal fat pad (EFP) site, a model of the human omentum, as opposed to free-floating in the intraperitoneal cavity (IP) in mice. We also examined the effects of reinforcing ALG with polyethylene glycol (PEG). To allow transplantation in the EFP site, we minimized capsule size to 500 ± 17 µm. Unlike ALG, PEG resists osmotic stress, hence we generated hybrid microcapsules by mixing PEG and ALG (MicroMix) or by coating ALG capsules with a 15 ± 2 µm PEG layer (Double). RESULTS: We found improved engraftment of fully allogeneic BALB/c islets in Micro capsules transplanted in the EFP (median reversal time [MRT], 1 day) versus the IP site (MRT, 5 days; P < 0.01) in diabetic C57BL/6 mice and of Micro encapsulated (MRT, 8 days) versus naked (MRT, 36 days; P < 0.01) baboon islets transplanted in the EFP site. Although in vitro viability and functionality of islets within MicroMix and Double capsules were comparable to Micro, addition of PEG to ALG in MicroMix capsules improved engraftment of allogeneic islets in the IP site, but resulted deleterious in the EFP site, probably due to lower biocompatibility. CONCLUSIONS: Our results suggest that capsule composition and transplant site affect graft outcomes through their effects on nutrient availability, capsule stability, and biocompatibility.


Assuntos
Alginatos/administração & dosagem , Transplante das Ilhotas Pancreáticas/métodos , Polietilenoglicóis/administração & dosagem , Animais , Cápsulas , Epididimo , Ácido Glucurônico/administração & dosagem , Ácidos Hexurônicos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Omento , Avaliação de Resultados em Cuidados de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA