Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37693446

RESUMO

Background: The intracellular Na + concentration ([Na + ] i ) is a crucial but understudied regulator of cardiac myocyte function. The Na + /K + ATPase (NKA) controls the steady-state [Na + ] i and thereby determines the set-point for intracellular Ca 2+ . Here, we investigate the nanoscopic organization and local adrenergic regulation of the NKA macromolecular complex and how it differentially regulates the intracellular Na + and Ca 2+ homeostases in atrial and ventricular myocytes. Methods: Multicolor STORM super-resolution microscopy, Western Blot analyses, and in vivo examination of adrenergic regulation are employed to examine the organization and function of Na + nanodomains in cardiac myocytes. Quantitative fluorescence microscopy at high spatiotemporal resolution is used in conjunction with cellular electrophysiology to investigate intracellular Na + homeostasis in atrial and ventricular myocytes. Results: The NKAα1 (NKAα1) and the L-type Ca 2+ -channel (Ca v 1.2) form a nanodomain with a center-to center distance of ∼65 nm in both ventricular and atrial myocytes. NKAα1 protein expression levels are ∼3 fold higher in atria compared to ventricle. 100% higher atrial I NKA , produced by large NKA "superclusters", underlies the substantially lower Na + concentration in atrial myocytes compared to the benchmark values set in ventricular myocytes. The NKA's regulatory protein phospholemman (PLM) has similar expression levels across atria and ventricle resulting in a much lower PLM/NKAα1 ratio for atrial compared to ventricular tissue. In addition, a huge PLM phosphorylation reserve in atrial tissue produces a high ß-adrenergic sensitivity of I NKA in atrial myocytes. ß-adrenergic regulation of I NKA is locally mediated in the NKAα1-Ca v 1.2 nanodomain via A-kinase anchoring proteins. Conclusions: NKAα1, Ca v 1.2 and their accessory proteins form a structural and regulatory nanodomain at the cardiac dyad. The tissue-specific composition and local adrenergic regulation of this "signaling cloud" is a main regulator of the distinct global intracellular Na + and Ca 2+ concentrations in atrial and ventricular myocytes.

2.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693581

RESUMO

Peroxisome de novo biogenesis requires yet unidentified mitochondrial proteins. We report that the outer mitochondrial membrane (OMM)-associated E3 Ub ligase MARCH5 is vital for generating mitochondria-derived pre-peroxisomes. MARCH5 knockout results in accumulation of immature peroxisomes and lower expression of various peroxisomal proteins. Upon fatty acid-induced peroxisomal biogenesis, MARCH5 redistributes to newly formed peroxisomes; the peroxisomal biogenesis under these conditions is inhibited in MARCH5 knockout cells. MARCH5 activity-deficient mutants are stalled on peroxisomes and induce accumulation of peroxisomes containing high levels of the OMM protein Tom20 (mitochondria-derived pre-peroxisomes). Furthermore, depletion of peroxisome biogenesis factor Pex14 leads to the formation of MARCH5- and Tom20-positive peroxisomes, while no peroxisomes are detected in Pex14/MARCH5 dko cells. Reexpression of WT, but not MARCH5 mutants, restores Tom20-positive pre-peroxisomes in Pex14/MARCH5 dko cells. Thus, MARCH5 acts upstream of Pex14 in mitochondrial steps of peroxisome biogenesis. Our data validate the hybrid, mitochondria-dependent model of peroxisome biogenesis and reveal that MARCH5 is an essential mitochondrial protein in this process. Summary: The authors found that mitochondrial E3 Ub ligase MARCH5 controls the formation of mitochondria-derived pre-peroxisomes. The data support the hybrid, mitochondria-dependent model of peroxisome biogenesis and reveal that MARCH5 is an essential mitochondrial protein in this process.

3.
Elife ; 122023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272417

RESUMO

Mitochondrial ATP production in ventricular cardiomyocytes must be continually adjusted to rapidly replenish the ATP consumed by the working heart. Two systems are known to be critical in this regulation: mitochondrial matrix Ca2+ ([Ca2+]m) and blood flow that is tuned by local cardiomyocyte metabolic signaling. However, these two regulatory systems do not fully account for the physiological range of ATP consumption observed. We report here on the identity, location, and signaling cascade of a third regulatory system -- CO2/bicarbonate. CO2 is generated in the mitochondrial matrix as a metabolic waste product of the oxidation of nutrients. It is a lipid soluble gas that rapidly permeates the inner mitochondrial membrane and produces bicarbonate in a reaction accelerated by carbonic anhydrase. The bicarbonate level is tracked physiologically by a bicarbonate-activated soluble adenylyl cyclase (sAC). Using structural Airyscan super-resolution imaging and functional measurements we find that sAC is primarily inside the mitochondria of ventricular cardiomyocytes where it generates cAMP when activated by bicarbonate. Our data strongly suggest that ATP production in these mitochondria is regulated by this cAMP signaling cascade operating within the inter-membrane space by activating local EPAC1 (Exchange Protein directly Activated by cAMP) which turns on Rap1 (Ras-related protein-1). Thus, mitochondrial ATP production is increased by bicarbonate-triggered sAC-signaling through Rap1. Additional evidence is presented indicating that the cAMP signaling itself does not occur directly in the matrix. We also show that this third signaling process involving bicarbonate and sAC activates the mitochondrial ATP production machinery by working independently of, yet in conjunction with, [Ca2+]m-dependent ATP production to meet the energy needs of cellular activity in both health and disease. We propose that the bicarbonate and calcium signaling arms function in a resonant or complementary manner to match mitochondrial ATP production to the full range of energy consumption in ventricular cardiomyocytes.


Assuntos
Cálcio , AMP Cíclico , Cálcio/metabolismo , AMP Cíclico/metabolismo , Bicarbonatos/metabolismo , Adenilil Ciclases/metabolismo , Dióxido de Carbono/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio da Dieta , Sinalização do Cálcio/fisiologia , Trifosfato de Adenosina/metabolismo
4.
Cell Mol Life Sci ; 79(11): 574, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36308570

RESUMO

Through their role in energy generation and regulation of several vital pathways, including apoptosis and inflammation, mitochondria are critical for the life of eukaryotic organisms. Mitochondrial dysfunction is a major problem implicated in the etiology of many pathologies, including neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), diabetes, cardiovascular diseases, and many others. Proteotoxic stress, here defined as a reduction in bioenergetic activity induced by the accumulation of aberrant proteins in the mitochondria, is likely to be implicated in disease-linked mitochondrial and cellular decline. Various quality control pathways, such as mitochondrial unfolded protein response (mtUPR), the ubiquitin (Ub)-dependent degradation of aberrant mitochondrial proteins, and mitochondria-specific autophagy (mitophagy), respond to proteotoxic stress and eliminate defective proteins or dysfunctional mitochondria. This work provides a concise review of mechanisms by which disease-linked aberrant proteins affect mitochondrial function and an overview of mitochondrial quality control pathways that counteract mitochondrial proteotoxicity. We focus on mitochondrial quality control mechanisms relying on the Ub-mediated protein degradation, such as mitochondria-specific autophagy and the mitochondrial arm of the Ub proteasome system (UPS). We highlight the importance of a widening perspective of how these pathways protect mitochondria from proteotoxic stress to better understand mitochondrial proteotoxicity in overlapping pathophysiological pathways. Implications of these mechanisms in disease development are also briefly summarized.


Assuntos
Doenças Neurodegenerativas , Ubiquitina , Humanos , Ubiquitina/metabolismo , Mitofagia , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
5.
Autophagy ; 17(11): 3884-3886, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34486484

RESUMO

Among other mechanisms, mitochondrial membrane dynamics including mitochondrial fission and fusion, and the activity of the ubiquitin (Ub)-proteasome system (UPS) both are critical for maintaining mitochondrial function. To advance our knowledge of the role of mitochondrial fission, the UPS, and how they coordinatively affect mitochondrial response to proteotoxicity, we analyzed mitochondrial ubiquitination and mitochondria-specific autophagy (mitophagy) in E3 Ub ligase PRKN/parkin-expressing and -deficient cells. Through imaging, biochemical, and genetic analyses, we found that in a model of acute reduction of mitochondrial translation fidelity (MTF) some population of mitochondria within a single cell are enriched, while some showed reduced levels of CYCS (cytochrome c, somatic) and CPOX (coproporphyrinogen oxidase) proteins, both located in the intermembrane space (IMS); henceforth called "mosaic distribution". Formation of mosaic mitochondria requires mitochondrial fission and active mitochondrial translation. In cell lines deficient in PRKN activity, this process is followed by severing the outer mitochondrial membrane (OMM) and ubiquitination of the inner mitochondrial membrane (IMM) proteins (including TRAP1 and CPOX), recruitment of autophagy receptors, and formation of mito-autophagosomes. In contrast, in PRKN-expressing cells, mitochondria with high CYCS and CPOX levels are preferentially targeted by PRKN, leading to OMM ubiquitination and canonical PRKN-PINK1-mediated autophagy.


Assuntos
Autofagia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Animais , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
6.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33851959

RESUMO

Here, we report that acute reduction in mitochondrial translation fidelity (MTF) causes ubiquitination of the inner mitochondrial membrane (IMM) proteins, including TRAP1 and CPOX, which occurs selectively in mitochondria with a severed outer mitochondrial membrane (OMM). Ubiquitinated IMM recruits the autophagy machinery. Inhibiting autophagy leads to increased accumulation of mitochondria with severed OMM and ubiquitinated IMM. This process occurs downstream of the accumulation of cytochrome c/CPOX in a subset of mitochondria heterogeneously distributed throughout the cell ("mosaic distribution"). Formation of mosaic mitochondria, OMM severing, and IMM ubiquitination require active mitochondrial translation and mitochondrial fission, but not the proapoptotic proteins Bax and Bak. In contrast, in Parkin-overexpressing cells, MTF reduction does not lead to the severing of the OMM or IMM ubiquitination, but it does induce Drp1-independent ubiquitination of the OMM. Furthermore, high-cytochrome c/CPOX mitochondria are preferentially targeted by Parkin, indicating that in the context of reduced MTF, they are mitophagy intermediates regardless of Parkin expression. In sum, Parkin-deficient cells adapt to mitochondrial proteotoxicity through a Drp1-mediated mechanism that involves the severing of the OMM and autophagy targeting ubiquitinated IMM proteins.


Assuntos
Autofagia , Dinaminas/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Citocromos c/metabolismo , Dinaminas/genética , Células HeLa , Humanos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Ubiquitina-Proteína Ligases/genética
7.
Metabolism ; 108: 154257, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32370945

RESUMO

BACKGROUND: Protein degradation is an energy-dependent process, requiring ATP at multiple steps. However, reports conflict as to the relationship between intracellular energetics and the rate of proteasome-mediated protein degradation. METHODS: To determine whether the concentration of the adenine nucleotide pool (ATP + ADP + AMP) affects protein degradation in muscle cells, we overexpressed an AMP degrading enzyme, AMP deaminase 3 (AMPD3), via adenovirus in C2C12 myotubes. RESULTS: Overexpression of AMPD3 resulted in a dose- and time-dependent reduction of total adenine nucleotides (ATP, ADP and AMP) without increasing the ADP/ATP or AMP/ATP ratios. In agreement, the reduction of total adenine nucleotide concentration did not result in increased Thr172 phosphorylation of AMP-activated protein kinase (AMPK), a common indicator of intracellular energetic state. Furthermore, LC3 protein accumulation and ULK1 (Ser 555) phosphorylation were not induced. However, overall protein degradation and ubiquitin-dependent proteolysis were slowed by overexpression of AMPD3, despite unchanged content of several proteasome subunit proteins and proteasome activity in vitro under standard conditions. CONCLUSIONS: Altogether, these findings indicate that a physiologically relevant decrease in ATP content, without a concomitant increase in ADP or AMP, is sufficient to decrease the rate of protein degradation and activity of the ubiquitin-proteasome system in muscle cells. This suggests that adenine nucleotide degrading enzymes, such as AMPD3, may be a viable target to control muscle protein degradation and perhaps muscle mass.


Assuntos
AMP Desaminase/metabolismo , Trifosfato de Adenosina/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Proteólise , Ubiquitina/metabolismo
8.
Carbohydr Res ; 351: 74-80, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22341504

RESUMO

ß-Maltose monohydrate was transformed into an anhydrous form by ethanol-mediated method under several temperatures with agitation. A new stable anhydrous form of ß-maltose (Mß(s)) was obtained, as substantiated by the X-ray diffraction patterns. Mß(s) obtained by this method presented a fine porous structure, resulting in greater specific surface area compared to those of ß-maltose monohydrate and anhydrous ß-maltose obtained by vacuum drying (Mß(h)). The crystal transformation presumably consisted of two steps: dehydration reaction from the hydrous to amorphous forms and crystal formation from the amorphous forms to the noble anhydrous form. The kinetics of these reactions were determined by thermal analysis using Jander's equation and Arrhenius plots. The overall activation energies of the dehydration reaction and the formation of anhydrous maltose were evaluated to be 100 and 90 kJ/mol, respectively.


Assuntos
Etanol/química , Maltose/química , Cristalização , Cristalografia por Raios X , Isomerismo , Cinética , Propriedades de Superfície , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA