Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Amino Acids ; 55(9): 1201-1212, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37543997

RESUMO

Peptides are remarkably interesting alternatives to several applications. In particular, antimicrobial sequences have raised major interest of the scientific community due to the resistance acquired by commonly used antibiotics. Amongst these, some dimeric peptides have shown very promising characteristics as strong biological activities and resistance against degradation by peptidases. However, despite such promising characteristics, a relatively small number of studies address dimeric peptides, mainly due to the synthesis-related obstacles in their production, whereas the well-implemented routines of solid phase peptide synthesis-which includes the possibility of automation-makes life significantly easier. Here, we present kinetic investigations of the dimerization of a cysteine-containing sequence to obtain the homodimeric antimicrobial peptide homotarsinin. Based on the structural and membrane interaction data already available for the dimer and its monomeric chain, we have proposed distinct dimerization protocols in selected environments, namely, aqueous buffer, TFE:H2O and micellar solutions. The experimental results were adjusted by a theoretical model. Both the kinetic profiles and the reaction yields are dependent on the reaction medium, clearly indicating that aggregation, peptide structure, and peptide-membrane interactions play major roles in the formation of the disulfide bond. Finally, the rationalization of the different aspects addressed here is expected to contribute to research and applications that demand the obtainment of dimeric peptides.

2.
Amino Acids ; 53(8): 1241-1256, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34251525

RESUMO

The antimicrobial peptides Ocellatin-LB1, -LB2 and -F1, isolated from frogs, are identical from residue 1 to 22, which correspond to the -LB1 sequence, whereas -LB2 carries an extra N and -F1 additional NKL residues at their C-termini. Despite the similar sequences, previous investigations showed different spectra of activities and biophysical investigations indicated a direct correlation between both membrane-disruptive properties and activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. This study presents experimental evidence as well as results from theoretical studies that contribute to a deeper understanding on how these peptides exert their antimicrobial activities and how small differences in the amino acid composition and their secondary structure can be correlated to these activity gaps. Solid-state NMR experiments allied to the simulation of anisotropic NMR parameters allowed the determination of the membrane topologies of these ocellatins. Interestingly, the extra Asn residue at the Ocellatin-LB2 C-terminus results in increased topological flexibility, which is mainly related to wobbling of the helix main axis as noticed by molecular dynamics simulations. Binding kinetics and thermodynamics of the interactions have also been assessed by Surface Plasmon Resonance and Isothermal Titration Calorimetry. Therefore, these investigations allowed to understand in atomic detail the relationships between peptide structure and membrane topology, which are in tune within the series -F1 > > -LB1 ≥ -LB2, as well as how peptide dynamics can affect membrane topology, insertion and binding.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Animais , Anuros , Calorimetria/métodos , Cinética , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície , Termodinâmica
3.
Biochim Biophys Acta Biomembr ; 1863(11): 183708, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310911

RESUMO

In recent decades, several epimers of peptides containing d-amino acids have been identified in antimicrobial sequences, a feature which has been associated with post-translational modification. Generally, d-isomers present similar or inferior antimicrobial activity, only surpassing their epimers in resistance to peptidases. The naturally occurring l-Phenylseptin (l-Phes) and d-Phenylseptin (d-Phes) peptides (FFFDTLKNLAGKVIGALT-nh2) were reported with d-epimer showing higher activity against Staphylococcus aureus and Xanthomonas axonopodis in comparison with the l-epimer. In this study, we combine structural (CD, solution NMR), orientational (solid-state NMR) and biophysical (ITC, DSC and DLS) studies to understand the role of the d-phenylalanine in the increase of the antimicrobial activity. Although both peptides are structurally similar in the helical region ranging from D4 to the C-terminus, significant structural differences were observed near the peptides' N-termini (which encompasses the FFF motif). Specific aromatic interactions involving the phenylalanine side chains of d-Phes is responsible to maintaining the F1-F3 residues on the hydrophobic face of the peptide, increasing its amphipathicity when compared to the l-epimer. The higher capability of d-Phes to exert an efficient anchoring in the hydrophobic core of the phospholipid bilayer indicates a pivotal role of the N-terminus in enhancing the interaction between the d-peptide and the membrane interface in relation to its epimer.


Assuntos
Peptídeos/metabolismo , Sequência de Aminoácidos , Calorimetria , Membrana Celular/metabolismo , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Ligação Proteica , Estereoisomerismo
4.
Front Mol Biosci ; 8: 680940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34169094

RESUMO

Superbugs are a public health problem, increasing the need of new drugs and strategies to combat them. Our group has previously identified LyeTxI, an antimicrobial peptide isolated from Lycosa erythrognatha spider venom. From LyeTxI, we synthesized and characterized a derived peptide named LyeTxI-b, which has shown significant in vitro and in vivo activity. In this work, we elucidate the interaction of LyeTxI-b with artificial membranes as well as its effects on resistant strains of bacteria in planktonic conditions or biofilms. Isothermal titration calorimetry revealed that LyeTxI-b interacts more rapidly and with higher intensity with artificial vesicles, showing higher affinity to anionic vesicles, when compared to synthetic LyeTxI. In calcein experiments, LyeTxI-b caused greater levels of vesicle cleavage. Both peptides showed antibacterial activity at concentrations of µmol L-1 against 12 different clinically isolated strains, in planktonic conditions, in a concentration-dependent manner. Furthermore, both peptides elicited a dose-dependent production of reactive oxygen species in methicillin-resistant Staphylococcus aureus. In S. aureus biofilm assay, LyeTxI-b was more potent than LyeTxI. However, none of these peptides reduced Escherichia coli biofilms. Our results show LyeTxI-b as a promising drug against clinically resistant strains, being a template for developing new antibiotics.

5.
Biochim Biophys Acta Biomembr ; 1863(1): 183449, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32828849

RESUMO

Studies have suggested that antimicrobial peptides act by different mechanisms, such as micellisation, self-assembly of nanostructures and pore formation on the membrane surface. This work presents an extensive investigation of the membrane interactions of the 14 amino-acid antimicrobial peptide hylaseptin P1-NH2 (HSP1-NH2), derived from the tree-frog Hyla punctata, which has stronger antifungal than antibacterial potential. Biophysical and structural analyses were performed and the correlated results were used to describe in detail the interactions of HSP1-NH2 with zwitterionic and anionic detergent micelles and phospholipid vesicles. HSP1-NH2 presents similar well-defined helical conformations in both zwitterionic and anionic micelles, although NMR spectroscopy revealed important structural differences in the peptide N-terminus. 2H exchange experiments of HSP1-NH2 indicated the insertion of the most N-terminal residues (1-3) in the DPC-d38 micelles. A higher enthalpic contribution was verified for the interaction of the peptide with anionic vesicles in comparison with zwitterionic vesicles. The pore formation ability of HSP1-NH2 (examined by dye release assays) and its effect on the size and surface charge as well as on the lipid acyl chain ordering (evaluated by Fourier-transform infrared spectroscopy) of anionic phospholipid vesicles showed membrane disruption even at low peptide-to-phospholipid ratios, and the effect increases proportionately to the peptide concentration. On the other hand, these biophysical investigations showed that a critical peptide-to-phospholipid ratio around 0.6 is essential for promoting disruption of zwitterionic membranes. In conclusion, this study demonstrates that the binding process of the antimicrobial HSP1-NH2 peptide depends on the membrane composition and peptide concentration.


Assuntos
Proteínas de Anfíbios/química , Membranas Artificiais , Proteínas Citotóxicas Formadoras de Poros/química , Animais , Anuros , Conformação Proteica em alfa-Hélice
6.
Front Microbiol ; 9: 667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681894

RESUMO

The antimicrobial peptide LyeTxI isolated from the venom of the spider Lycosa erythrognatha is a potential model to develop new antibiotics against bacteria and fungi. In this work, we studied a peptide derived from LyeTxI, named LyeTxI-b, and characterized its structural profile and its in vitro and in vivo antimicrobial activities. Compared to LyeTxI, LyeTxI-b has an acetylated N-terminal and a deletion of a His residue, as structural modifications. The secondary structure of LyeTxI-b is a well-defined helical segment, from the second amino acid to the amidated C-terminal, with no clear partition between hydrophobic and hydrophilic faces. Moreover, LyeTxI-b shows a potent antimicrobial activity against Gram-positive and Gram-negative planktonic bacteria, being 10-fold more active than the native peptide against Escherichia coli. LyeTxI-b was also active in an in vivo model of septic arthritis, reducing the number of bacteria load, the migration of immune cells, the level of IL-1ß cytokine and CXCL1 chemokine, as well as preventing cartilage damage. Our results show that LyeTxI-b is a potential therapeutic model for the development of new antibiotics against Gram-positive and Gram-negative bacteria.

7.
Peptides ; 103: 72-83, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29596881

RESUMO

The peptides ocellatin-LB1, -LB2 and -F1 have previously been isolated from anurans of the Leptodactylus genus and the sequences are identical from residue 1-22, which correspond to ocellatin-LB1 sequence (GVVDILKGAAKDIAGHLASKVM-NH2), whereas ocellatin-LB2 carries an extra N and ocellatin-F1 extra NKL residues at their C-termini. These peptides showed different spectra of activities and biophysical investigations indicated a direct correlation between membrane-disruptive properties and antimicrobial activities, i.e. ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. To better characterize their membrane interactions, we report here the detailed three-dimensional NMR structures of these peptides in TFE-d2:H2O (60:40) and in the presence of zwitterionic DPC-d38 and anionic SDS-d25 micellar solutions. Although the three peptides showed significant helical contents in the three mimetic environments, structural differences were noticed. When the structures of the three peptides in the presence of DPC-d38 micelles are compared to each other, a more pronounced curvature is observed for ocellatin-F1 and the bent helix, with the concave face composed mostly of hydrophobic residues, is consistent with the micellar curvature and the amphipathic nature of the molecule. Interestingly, an almost linear helical segment was observed for ocellatin-F1 in the presence of SDS-d25 micelles and the conformational differences in the two micellar environments are possibly related to the presence of the extra Lys residue near the peptide C-terminus, which increases the affinity of ocellatin-F1 to anionic membranes in comparison with ocellatin-LB1 and -LB2, as proved by isothermal titration calorimetry. To our knowledge, this work reports for the first time the three-dimensional structures of ocellatin peptides.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Peptídeos/isolamento & purificação , Animais , Anuros
8.
Langmuir ; 33(43): 12235-12243, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28988485

RESUMO

In general, the methodologies for the preparation of carbon dots (CDs) lead to the formation of nanostructures with size and surface chemistry heterogeneity. Because the electronic and optical properties of these nanoparticles are directly associated with these properties, the development of purification and selection strategies is essential. Herein, we report a systematic study of the spontaneous partition and separation of highly oxidized carbon dots (OCDs) prepared by the dehydration and oxidation reactions of cotton cellulose in aqueous two-phase systems (ATPSs) based on polymer-salt pairs. The partition of the CDs was investigated in different ATPSs in which the effects of the cations and anions of the salts, molecular mass and nature of the polymer, tie-line length, initial pH, and surface modification of the nanoparticles on the partition coefficient (K) were evaluated. The results showed that the best separation occurred with a system consisting of PEO1500 + lithium sulfate + water using reduced CDs with hydrazine. Alternatively, the lowest value of K, 0.79, was obtained for a poly(ethylene oxide) PEO1500 + sodium tartrate + water system with pH = 6 using OCDs. The detailed analyses of the top and bottom phases of the systems with fluorescence and ultraviolet-visible spectroscopy showed that ATPSs are capable, in addition to partitioning, of separating the nanoparticles with different optical properties, which are directly associated with the surface properties and particle sizes. We believe that the presented methodology is an alternative, practical, fast, and potentially scalable technique for the separation of carbon nanostructures with different optical properties.

9.
Amino Acids ; 49(8): 1389-1400, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28573520

RESUMO

This work proposes a strategy that uses solid-phase peptide synthesis associated with copper(I)-catalyzed azide alkyne cycloaddition reaction to promote the glycosylation of an antimicrobial peptide (HSP1) containing a carboxyamidated C-terminus (HSP1-NH2). Two glycotriazole-peptides, namely [p-Glc-trz-G1]HSP1-NH2 and [p-GlcNAc-trz-G1]HSP1-NH2, were prepared using per-O-acetylated azide derivatives of glucose and N-acetylglucosamine in the presence of copper(II) sulfate pentahydrate (CuSO4·5H2O) and sodium ascorbate as a reducing agent. In order to investigate the synergistic action of the carbohydrate motif linked to the triazole-peptide structure, a triazole derivative [trz-G1]HSP1-NH2 was also prepared. A set of biophysical approaches such as DLS, Zeta Potential, SPR and carboxyfluorescein leakage from phospholipid vesicles confirmed higher membrane disruption and lytic activities as well as stronger peptide-LUVs interactions for the glycotriazole-peptides when compared to HSP1-NH2 and to its triazole derivative, which is in accordance with the performed biological assays: whereas HSP1-NH2 presents relatively low and [trz-G1]HSP1-NH2 just moderate fungicidal activity, the glycotriazole-peptides are significantly more effective antifungal agents. In addition, the glycotriazole-peptides and the triazole derivative present strong inhibition effects on ergosterol biosynthesis in Candida albicans, when compared to HSP1-NH2 alone. In conclusion, the increased fungicidal activity of the glycotriazole-peptides seems to be the result of (A) more pronounced membrane-disruptive properties, which is related to the presence of a saccharide ring, together with (B) the inhibition of ergosterol biosynthesis, which seems to be related to the presence of both the monosaccharide and the triazole rings.


Assuntos
Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Carboidratos/química , Fungos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Triazóis/química , Antifúngicos/química , Catálise , Química Click , Fragmentos de Peptídeos/química , Técnicas de Síntese em Fase Sólida
10.
Artigo em Inglês | MEDLINE | ID: mdl-28115922

RESUMO

BACKGROUND: The availability of antimicrobial peptides from several different natural sources has opened an avenue for the discovery of new biologically active molecules. To the best of our knowledge, only two peptides isolated from the frog Leptodactylus labyrinthicus, namely pentadactylin and ocellatin-F1, have shown antimicrobial activities. Therefore, in order to explore the antimicrobial potential of this species, we have investigated the biological activities and membrane interactions of three peptides isolated from the anuran skin secretion. METHODS: Three peptide primary structures were determined by automated Edman degradation. These sequences were prepared by solid-phase synthesis and submitted to activity assays against gram-positive and gram-negative bacteria and against two fungal strains. The hemolytic properties of the peptides were also investigated in assays with rabbit blood erythrocytes. The conformational preferences of the peptides and their membrane interactions have been investigated by circular dichroism spectroscopy and liposome dye release assays. RESULTS: The amino acid compositions of three ocellatins were determined and the sequences exhibit 100% homology for the first 22 residues (ocellatin-LB1 sequence). Ocellatin-LB2 carries an extra Asn residue and ocellatin-F1 extra Asn-Lys-Leu residues at C-terminus. Ocellatin-F1 presents a stronger antibiotic potential and a broader spectrum of activities compared to the other peptides. The membrane interactions and pore formation capacities of the peptides correlate directly with their antimicrobial activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. All peptides acquire high helical contents in membrane environments. However, ocellatin-F1 shows in average stronger helical propensities. CONCLUSIONS: The obtained results indicate that the three extra amino acid residues at the ocellatin-F1 C-terminus play an important role in promoting stronger peptide-membrane interactions and antimicrobial properties. The extra Asn-23 residue present in ocellatin-LB2 sequence seems to decrease its antimicrobial potential and the strength of the peptide-membrane interactions.

11.
Sci Rep ; 7: 40854, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102305

RESUMO

Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Bicamadas Lipídicas/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anuros/metabolismo , Calorimetria , Dicroísmo Circular , Dimerização , Difusão Dinâmica da Luz , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Bicamadas Lipídicas/química , Testes de Sensibilidade Microbiana , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
12.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;232017.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484704

RESUMO

Abstract Background The availability of antimicrobial peptides from several different natural sources has opened an avenue for the discovery of new biologically active molecules. To the best of our knowledge, only two peptides isolated from the frog Leptodactylus labyrinthicus, namely pentadactylin and ocellatin-F1, have shown antimicrobial activities. Therefore, in order to explore the antimicrobial potential of this species, we have investigated the biological activities and membrane interactions of three peptides isolated from the anuran skin secretion. Methods Three peptide primary structures were determined by automated Edman degradation. These sequences were prepared by solid-phase synthesis and submitted to activity assays against gram-positive and gram-negative bacteria and against two fungal strains. The hemolytic properties of the peptides were also investigated in assays with rabbit blood erythrocytes. The conformational preferences of the peptides and their membrane interactions have been investigated by circular dichroism spectroscopy and liposome dye release assays. Results The amino acid compositions of three ocellatins were determined and the sequences exhibit 100% homology for the first 22 residues (ocellatin-LB1 sequence). Ocellatin-LB2 carries an extra Asn residue and ocellatin-F1 extra Asn-Lys-Leu residues at C-terminus. Ocellatin-F1 presents a stronger antibiotic potential and a broader spectrum of activities compared to the other peptides. The membrane interactions and pore formation capacities of the peptides correlate directly with their antimicrobial activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. All peptides acquire high helical contents in membrane environments. However, ocellatin-F1 shows in average stronger helical propensities. Conclusions The obtained results indicate that the three extra amino acid residues at the ocellatin-F1 C-terminus play an important role in promoting stronger peptide-membrane interactions and antimicrobial properties. The extra Asn-23 residue present in ocellatin-LB2 sequence seems to decrease its antimicrobial potential and the strength of the peptide-membrane interactions.

13.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;23: 4, 2017. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954808

RESUMO

Background The availability of antimicrobial peptides from several different natural sources has opened an avenue for the discovery of new biologically active molecules. To the best of our knowledge, only two peptides isolated from the frog Leptodactylus labyrinthicus, namely pentadactylin and ocellatin-F1, have shown antimicrobial activities. Therefore, in order to explore the antimicrobial potential of this species, we have investigated the biological activities and membrane interactions of three peptides isolated from the anuran skin secretion. Methods Three peptide primary structures were determined by automated Edman degradation. These sequences were prepared by solid-phase synthesis and submitted to activity assays against gram-positive and gram-negative bacteria and against two fungal strains. The hemolytic properties of the peptides were also investigated in assays with rabbit blood erythrocytes. The conformational preferences of the peptides and their membrane interactions have been investigated by circular dichroism spectroscopy and liposome dye release assays. Results The amino acid compositions of three ocellatins were determined and the sequences exhibit 100% homology for the first 22 residues (ocellatin-LB1 sequence). Ocellatin-LB2 carries an extra Asn residue and ocellatin-F1 extra Asn-Lys-Leu residues at C-terminus. Ocellatin-F1 presents a stronger antibiotic potential and a broader spectrum of activities compared to the other peptides. The membrane interactions and pore formation capacities of the peptides correlate directly with their antimicrobial activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. All peptides acquire high helical contents in membrane environments. However, ocellatin-F1 shows in average stronger helical propensities. Conclusions The obtained results indicate that the three extra amino acid residues at the ocellatin-F1 C-terminus play an important role in promoting stronger peptide-membrane interactions and antimicrobial properties. The extra Asn-23 residue present in ocellatin-LB2 sequence seems to decrease its antimicrobial potential and the strength of the peptide-membrane interactions.(AU)


Assuntos
Peptídeos , Produtos Biológicos , Dicroísmo Circular , Antibacterianos , Anuros/fisiologia , Anti-Infecciosos
14.
Biophys J ; 107(4): 901-11, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25140425

RESUMO

Phylloseptin-1, -2, and -3 are three members of the family of linear cationic antimicrobial peptides found in tree frogs. The highly homologous peptides encompass 19 amino acids, and only differ in the amino acid composition and charge at the six most carboxy-terminal residues. Here, we investigated how such subtle changes are reflected in their membrane interactions and how these can be correlated to their biological activities. To this end, the three peptides were labeled with stable isotopes, reconstituted into oriented phospholipid bilayers, and their detailed topology determined by a combined approach using (2)H and (15)N solid-state NMR spectroscopy. Although phylloseptin-2 and -3 adopt perfect in-plane alignments, the tilt angle of phylloseptin-1 deviates by 8° probably to assure a more water exposed localization of the lysine-17 side chain. Furthermore, different azimuthal angles are observed, positioning the amphipathic helices of all three peptides with the charged residues well exposed to the water phase. Interestingly, our studies also reveal that two orientation-dependent (2)H quadrupolar splittings from methyl-deuterated alanines and one (15)N amide chemical shift are sufficient to unambiguously determine the topology of phylloseptin-1, where quadrupolar splittings close to the maximum impose the most stringent angular restraints. As a result of these studies, a strategy is proposed where the topology of a peptide structure can be determined accurately from the labeling with (15)N and (2)H isotopes of only a few amino acid residues.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Simulação por Computador , Deutério/química , Modelos Químicos , Radioisótopos de Nitrogênio/química , Fosfolipídeos/química
15.
PLoS One ; 8(4): e59255, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565145

RESUMO

Skin secretion of Hypsiboas punctatus is the source of a complex mixture of bioactive compounds where peptides and small proteins prevail, similarly to many other amphibians. Among dozens of molecules isolated from H. punctatus in a proteomic based approach, we report here the structural and functional studies of a novel peptide named Phenylseptin (FFFDTLKNLAGKVIGALT-NH2) that was purified as two naturally occurring D- and L-Phes configurations. The amino acid epimerization and C-terminal amidation for both molecules were confirmed by a combination of techniques including reverse-phase UFLC, ion mobility mass spectrometry, high resolution MS/MS experiments, Edman degradation, cDNA sequencing and solid-phase peptide synthesis. RMSD analysis of the twenty lowest-energy (1)H NMR structures of each peptide revealed a major 90° difference between the two backbones at the first four N-terminal residues and substantial orientation changes of their respective side chains. These structural divergences were considered to be the primary cause of the in vitro quantitative differences in antimicrobial activities between the two molecules. Finally, both molecules elicited equally aversive reactions in mice when delivered orally, an effect that depended entirely on peripheral gustatory pathways.


Assuntos
Aminoácidos/química , Anuros/genética , Peptídeos/química , Peptídeos/metabolismo , Pele/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Bases , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Peptídeos/farmacologia , Conformação Proteica , Alinhamento de Sequência , Canais de Cátion TRPM/deficiência , Paladar , Percepção Gustatória/genética
16.
Proc Natl Acad Sci U S A ; 106(39): 16639-44, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19805350

RESUMO

The heterodimeric antimicrobial peptide distinctin is composed of 2 linear peptide chains of 22- and 25-aa residues that are connected by a single intermolecular S-S bond. This heterodimer has been considered to be a unique example of a previously unrecorded class of bioactive peptides. Here the 2 distinctin chains were prepared by chemical peptide synthesis in quantitative amounts and labeled with (15)N, as well as (15)N and (2)H, at selected residues, respectively, and the heterodimer was formed by oxidation. CD spectroscopy indicates a high content of helical secondary structures when associated with POPC/POPG 3:1 vesicles or in membrane-mimetic environments. The propensity for helix formation follows the order heterodimer >chain 2 >chain 1, suggesting that peptide-peptide and peptide-lipid interactions both help in stabilizing this secondary structure. In a subsequent step the peptides were reconstituted into oriented phospholipid bilayers and investigated by (2)H and proton-decoupled (15)N solid-state NMR spectroscopy. Whereas chain 2 stably inserts into the membrane at orientations close to perfectly parallel to the membrane surface in the presence or absence of chain 1, the latter adopts a more tilted alignment, which further increases in the heterodimer. The data suggest that membrane interactions result in considerable conformational rearrangements of the heterodimer. Therefore, chain 2 stably anchors the heterodimer in the membrane, whereas chain 1 interacts more loosely with the bilayer. These structural observations are consistent with the antimicrobial activities when the individual chains are compared to the dimer.


Assuntos
Proteínas de Anfíbios/química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Membrana/química , Dicroísmo Circular , Modelos Biológicos , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Conformação Proteica
17.
Biophys J ; 96(6): 2194-203, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19289046

RESUMO

DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an alpha-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with (15)N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting (15)N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled (31)P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Lipossomas Unilamelares/química , Animais , Anuros , Dicroísmo Circular , Bicamadas Lipídicas/química , Micelas , Modelos Moleculares , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Fosfatidilcolinas , Isótopos de Fósforo , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Conformação Proteica , Dodecilsulfato de Sódio/química , Trifluoretanol/química , Água/química
18.
Biochem Biophys Res Commun ; 377(4): 1057-61, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18976634

RESUMO

A novel family of antimicrobial peptides, named raniseptins, has been characterized from the skin secretion of the anuran Hypsiboas raniceps. Nine cDNA molecules have been successfully cloned, sequenced, and their respective polypeptides were characterized by mass spectrometry and Edman degradation. The encoded precursors share structural similarities with the dermaseptin prepropeptides from the Phyllomedusinae subfamily and the mature 28-29 residue long peptides undergo further proteolytic cleavage in the crude secretion yielding consistent fragments of 14-15 residues. The biological assays performed demonstrated that the Rsp-1 peptide has antimicrobial activity against different bacterial strains without significant lytic effect against human erythrocytes, whereas the peptide fragments generated by endoproteolysis show limited antibiotic potency. MALDI imaging mass spectrometry in situ studies have demonstrated that the mature raniseptin peptides are in fact secreted as intact molecules within a defined glandular domain of the dorsal skin, challenging the physiological role of the observed raniseptin fragments, identified only as part of the crude secretion. In this sense, stored and secreted antimicrobial peptides may confer distinct protective roles to the frog.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Anuros/imunologia , Pele/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anuros/microbiologia , Bactérias/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , Dados de Sequência Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
Vaccine ; 26(35): 4585-93, 2008 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-18588933

RESUMO

A2 was identified as an amastigote virulence factor of Leishmania (Leishmania) donovani and as a candidate antigen for vaccine development against visceral leishmaniasis. Here, predicted hydrophilic, class I and II MHC-binding synthetic peptides were used to define epitopes recognized by A2-specific antibodies, CD8+ T and CD4+ T cells, respectively. Immunization of BALB/c mice with adenovirus expressing A2 (AdA2) resulted in low antibody response, contrasting with high levels of IFN-gamma producing CD4+ T and CD8+ T cells specific for A2. Further, A2-specific CD8+ T cells from immunized mice were capable of lysing sensitized target cells in vivo. Finally, we demonstrated an association of A2-specific T cell responses and reduced parasitism in both liver and spleen from mice immunized with AdA2 and challenged with L. (L.) chagasi.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Mapeamento de Epitopos , Interferon gama/imunologia , Vacinas contra Leishmaniose/imunologia , Proteínas de Protozoários/imunologia , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Linfócitos T CD4-Positivos/imunologia , Testes Imunológicos de Citotoxicidade , Epitopos de Linfócito B , Epitopos de Linfócito T , Feminino , Vetores Genéticos , Leishmania donovani/genética , Vacinas contra Leishmaniose/genética , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Baço/parasitologia
20.
Peptides ; 29(1): 15-24, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18083275

RESUMO

DD K is an antimicrobial peptide previously isolated from the skin of the amphibian Phyllomedusa distincta. The effect of cholesterol on synthetic DD K binding to egg lecithin liposomes was investigated by intrinsic fluorescence of tryptophan residue, measurements of kinetics of 5(6)-carboxyfluorescein (CF) leakage, dynamic light scattering and isothermal titration microcalorimetry. An 8 nm blue shift of tryptophan maximum emission fluorescence was observed when DD K was in the presence of lecithin liposomes compared to the value observed for liposomes containing 43 mol% cholesterol. The rate and the extent of CF release were also significantly reduced by the presence of cholesterol. Dynamic light scattering showed that lecithin liposome size increase from 115 to 140 nm when titrated with DD K but addition of cholesterol reduces the liposome size increments. Isothermal titration microcalorimetry studies showed that DD K binding both to liposomes containing cholesterol as to liposomes devoid of it is more entropically than enthalpically favored. Nevertheless, the peptide concentration necessary to furnish an adjustable titration curve is much higher for liposomes containing cholesterol at 43 mol% (2 mmol L(-1)) than in its absence (93 micromol L(-1)). Apparent binding constant values were 2160 and 10,000 L mol(-1), respectively. The whole data indicate that DD K binding to phosphatidylcholine liposomes is significantly affected by cholesterol, which contributes to explain the low hemolytic activity of the peptide.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Colesterol/química , Lipossomos/química , Antibacterianos/síntese química , Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Calorimetria , Gema de Ovo/química , Fluoresceínas/química , Cinética , Luz , Ligação Proteica , Espalhamento de Radiação , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA